

Proactive by Design

RCRA GROUNDWATER ASSESSMENT MONITORING PROGRAM APRIL 2018 WHYCO FINISHING TECHNOLOGIES, LLC 670 Waterbury Road Thomaston, Connecticut

May 2018 File No. 05.0044541.10

PREPARED FOR:

Whyco Finishing Technologies, LLC 670 Waterbury Road Thomaston, CT 06787

GZA GeoEnvironmental, Inc.

655 Winding Brook Drive, Suite 402 | Glastonbury, CT 06033 860-286-8900

32 Offices Nationwide www.gza.com

Copyright© 2018 GZA GeoEnvironmental, Inc.

Proactive by Design

GEOTECHNICAL ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

655 Winding Brook Drive Suite 402 Glastonbury, CT 06033 T: 860.286.8900 F: 860.652.8590 www.gza.com

May 18, 2018 File No. 05.0044541.10

State of Connecticut Department of Energy and Environmental Protection Bureau of Water Protection and Land Reuse 79 Elm Street Hartford, CT 06106-5127

Attention: Ms. Sandra Brunelli

Re: RCRA Groundwater Assessment Monitoring Program, April 2018
Whyco Finishing Technologies, LLC
Thomaston, Connecticut
EPA ID CTD001450154

Dear Ms. Brunelli:

This report presents the results of the first semi-annual groundwater sampling event of 2018 conducted on April 25 and 26, 2018 at the Whyco Finishing Technologies, LLC facility in Thomaston, Connecticut (Site). These results represent the first event of the thirtieth year of post-closure monitoring and the first event of the thirty-fourth year of assessment monitoring at the Site under the RCRA program. This report is subject to the Limitations included in Appendix A.

This submittal provides the laboratory analytical results of the Site groundwater monitoring completed in April 2018 and our assessment of the results. A Site Locus Plan is provided as Figure 1 and a Site Plan showing sampling locations is provided as Figure 2. Groundwater elevation contour plans are provided on Figure 3A (overburden) and 3B (bedrock). Well completion details for the RCRA groundwater monitoring network are summarized on Table 1; a summary of the post-closure well sampling program is provided on Table 2; groundwater elevation data are summarized on Table 3; vertical groundwater gradients are provided on Table 4; and field screening readings and the results of laboratory analyses are summarized on Table 5.

The next semi-annual sampling event is scheduled for October 2018.

Please do not hesitate to contact us at (860) 286-8900 if you have any questions or comments regarding this report.

Very truly yours,

GZA GEOENVIRONMENTAL, INC.

Benjamin D. Rach

Assistant Project Manager

Gordon T. Brookman, LEP

Principal

Christopher J. Frey, LEP Senior Project Manager

Adam T. Henry, LEP Consultant/Reviewer

cc: Barbara Lewis, Whyco Finishing Technologies, LLC

J:_44,500-44,999\44541 Whyco\44541-10.gtb\Reports\April 2018\Apr 2018.docx

1.00 BACKGROUND	1
1.10 RCRA MONITORING NETWORK	2
1.20 GROUNDWATER MONITORING PROGRAM	3
2.00 FIELD OBSERVATIONS AND SAMPLING	3
3.00 GROUNDWATER FLOW	3
4.00 ANALYTICAL RESULTS	5
4.10 QA/QC RESULTS	5
4.20 REPORTING LIMITS	5
4.30 INORGANIC COMPOUNDS	5
5.00 DISCUSSION	6
5.10 STATISTICAL ANALYSES	6
5.20 TRENDS AND HISTORICAL COMPARISONS	7
5.30 ADEQUACY OF THE MONITORING PROGRAM	7

TABLES

TABLE 1	SUMMARY OF MONITORING WELL COMPLETION DETAILS
TABLE 2	2018 GROUNDWATER SAMPLING MATRIX
TABLE 3	SUMMARY OF WATER LEVEL OBSERVATION DATA FOR APRIL 2018
TABLE 4	VERTICAL GROUNDWATER POTENTIALS
TABLE 5	SUMMARY OF SAMPLE RESULTS FOR APRIL 2018

FIGURES FIGURE 1

FIGURE 2 SITE PLAN
FIGURE 3A OVERBURDEN GROUNDWATER CONTOUR MAP
FIGURE 3B BEDROCK GROUNDWATER CONTOUR MAP

APPENDICES

APPENDIX A LIMITATIONS

APPENDIX B SAMPLING FIELD DATA SHEETS

APPENDIX C LABORATORY ANALYTICAL REPORTS

SITE LOCUS

1.00 BACKGROUND

The Whyco Finishing Technologies, LLC (Whyco) facility (Site) is located on Waterbury Road in the southern portion of Thomaston, Connecticut. The Naugatuck River forms the western and southwestern boundaries of the property. The Thomaston Sewage Treatment Plant is located on the western bank of the Naugatuck River, opposite the Whyco facility. A New York/New Haven/Hartford railroad and right-of-way traverses the Whyco facility in the area between the eastern side of the building and Waterbury Road. A stone quarry and then the Mattatuck State Forest beyond are located on the east side of Waterbury Road. The Site coordinates are 41 degrees, 38 minutes, 34 seconds north latitude and 73 degrees, 4 minutes, 43 seconds west longitude. A Site locus map is provided as Figure 1. A Site plan showing the facility boundaries and pertinent physical features is provided in Figure 2. The Site is registered as a USEPA Transfer Storage and Disposal Facility under Site identification number CTD001450154.

Whyco's primary business is custom metal finishing (electroplating and surface coating) performed on parts supplied by a variety of customers. Operations at the Site have undergone significant reductions in past years. On-site operations have included electroplating, surface coating, bright dipping, lacquering, vapor degreasing with methylene chloride, and corrosive cleaning. Metals used in their plating operations included chromium, copper, nickel, zinc, and tin/cobalt alloy. Surface coating operations performed at the Site have included chromating, phosphating, and painting. Dilute rinsewaters are treated by chrome reduction, cyanide destruction, chemical precipitation and pH adjustment. Treatment processes generate metal hydroxide sludge that is a listed hazardous waste (F006).

A number of major revisions to Whyco's waste management practices took place subsequent to the passage of the 1967 Connecticut Clean Water Act and the Federal Clean Water Act of 1972. A primary modification was the institution of a wastewater pretreatment system for the three main waste streams generated by Whyco's production process (i.e., acid/alkali wastewater containing various metals, cyanide-bearing wastewater containing metals, and chromium-containing wastewater). The cyanide and chromium wastewater streams are individually pre-treated by the wastewater treatment system to destroy cyanide and reduce chromium, respectively. The two streams are then combined for the removal of metals and neutralization.

Prior to 1985, the treated, combined waste stream was directed to a clarifier tank for settling. The wastewater was then directed to the effluent recharge lagoons at the southern end of the property where the wastewater percolated through the soil to the groundwater and eventually discharged to the Naugatuck River. The locations of the former lagoon areas are shown on Figure 2.

The sludge from the clarifier tank was placed into the two hypalon-lined lagoons (Solid Waste Management Unit [SWMU] No. 2) on the eastern side of the property. This sludge was moved to the Sludge Drying Lagoon (SWMU No. 3) for further drying until finally placed in the landfill (SWMU No. 1). See Figure 2.

Due to the presence of the thickening lagoon, drying lagoon, and sludge landfill, Whyco submitted a RCRA Part A Permit Application to the U.S. Environmental Protection Agency (EPA) on November 17, 1980. At that time, Whyco was issued EPA identification number CTD001450154. Specifically, this application addressed the facility's operation of these three-metal hydroxide sludge (F006 listed waste) management areas, although they were not discussed accurately. One management area was identified as a surface impoundment with the maximum storage capacity of 161,000 gallons. A second was identified as an 80,000 gallon per day treatment surface impoundment, the drying lagoon. The third was identified as an 80,000 gallon per day treatment tank, the lined thickening beds. The

Connecticut Department of Energy and Environmental Protection (CTDEEP)¹ and the EPA approved closure of the lagoons and waste pile, and closure was implemented and certified as having been completed in accordance with CTDEEP/EPA-approved closure plans on February 7, 1990.

The Whyco facility presently occupies approximately seven acres and includes an approximately 100,000-square foot production building located in the northern portion of the Site. The production building (SWMU No. 4) includes several SWMUs, many of which have been closed. Closed units include waste cyanide (SWMU No. 10) and acid/alkali drum storage areas (SWMU No. 11) and a waste methylene chloride tank (SWMU No. 14), which was located outside the main building in an enclosed area. Four interior waste treatment tanks are currently in-use as liquid bulk storage areas for waste cyanide- and arsenic-contaminated liquids (SWMU Nos. 15, 16, 17, and 18, respectively). Outside the main building was a shed designated as an ignitable drum storage area (SWMU No. 12).

As indicated above, the southern portion of the Site is occupied by a series of inactive lagoons (SWMU Nos. 2 and 3), now closed and capped but historically operated in conjunction with the on-site wastewater treatment system. Also located there is a hazardous waste landfill (SWMU No. 1), closed in 1985 and containing wastewater treatment sludge from electroplating operations.

Formerly, treated rinse waters were discharged to the Naugatuck River under NPDES Permit No. CT0001457 issued by the State of Connecticut Water Management Bureau. Whyco made significant modification to their operations and achieved their goal of zero discharges of treated wastewaters to the river through modification of their operations in Fall 2008, at which time the discharge permit was terminated.

1.10 RCRA MONITORING NETWORK

In 1985, Whyco installed six overburden monitoring wells, designated MW-2, MW-3, WC-1A, WC-2, WC-3, and WC-4, to meet EPA interim status detection monitoring requirements (40 CFR 265). These wells were installed downgradient of the RCRA units. Well construction data for groundwater monitoring wells installed at the Site are summarized in Table 1. Through time the monitoring network has been modified many times to adjust to the conditions observed. Key modifications included:

- 1985 expansion for a groundwater Quality Assessment (QA) Program
- 1988 expansion of bedrock monitoring points to further QA Program
- 1994 expansion to further QA Program
- 1998 expansion to voluntarily monitor a process release and address Transfer Act requirements
- 2003 expansion to address Transfer Act requirements
- 2012 reduction of wells sampled and sampling twice per year

The current groundwater monitoring program for both RCRA and the Property Transfer Act is shown on Table 2.

¹ The Department of Environmental Protection was merged with the Department of Public Utility Control to become the Department of Energy and Environmental Protection (CTDEEP) on July 1, 2011.

1.20 RCRA GROUNDWATER MONITORING PROGRAM

Groundwater elevation data is measured at thirty-three wells at the Site each semi-annual event to provide data used to assess the direction and velocity of groundwater movement. Wells gauged at the Site and groundwater elevation data recorded during this event are listed on Table 3. Depth to groundwater measured at the wells and observations of the well conditions are summarized on a water level measurement log presented in Appendix B.

The parameters monitored in April each year under the RCRA groundwater assessment monitoring program include cadmium, total chromium, copper, cobalt, nickel, pH, and specific conductance (See Table 2). Parameters monitored annually in October include the preceding and halogenated VOCs (see Table 2). Hexavalent chromium is also sampled on a voluntary basis under the Property Transfer Act (PTA) program during both the April and October events.

2.00 FIELD OBSERVATIONS AND SAMPLING

GZA personnel measured depth to water at Site wells on April 25, 2018. On April 25 and 26, 2018, GZA personnel collected groundwater samples from designated RCRA post-closure and Property Transfer Act monitoring wells and relinquished those samples to ESS Laboratory, Cranston, RI for analysis of the approved monitoring program constituents as described above and summarized on Table 2. Samples collected for hexavalent chromium analysis were relinquished to Phoenix Environmental Laboratory of Manchester, Connecticut due to the short holding time (24 hours) of those samples.

The groundwater samples were collected using EPA low stress/low flow groundwater sampling protocols and following GZA Standard Operating Procedures (SOPs). The groundwater samples were analyzed by methods described in "Test Methods for Evaluating Solid Waste", EPA SW-846 and using Connecticut Reasonable Confidence Protocol (RCP) Quality Assurance/Quality Control testing methodologies. Quality control samples submitted this sampling round included one matrix spike, one matrix spike duplicate (MS/MSD) and one trip blank. Results of these quality control samples were assessed and evaluated for conformance with RCP test protocols and usability in accordance with Connecticut RCP Data Usability Evaluation guidance.

Groundwater quality parameters monitored during sampling of the above wells were recorded on groundwater sampling field data sheets, copies of which are presented in Appendix B. Laboratory analytical reports, including RCP test results, are presented within Appendix C.

3.00 GROUNDWATER FLOW

Groundwater piezometric contour maps for the April 2018 sampling event were prepared for the overburden (Figure 3A) and bedrock (Figure 3B) aquifers at the Site using the water level observation data collected at Site wells on April 25, 2018 (Table 3). The contour maps indicate that groundwater flow in the overburden aquifer was generally to the west and southwest in the northern portion of the Site and shifting generally to the south and southwest in the southern portion of the Site. Consistent with previous events, a small groundwater mound is indicated near wells MW-8 and MW-9. Groundwater flow in the bedrock aquifer in the southern portion of the Site (where bedrock wells are available) is shown to be generally west toward the southward-flowing Naugatuck River, immediately west of the facility property.

Based on a comparison of the water level elevation data on Table 3 and water table contours on Figures 3A and 3B, the directions of groundwater flow in the overburden and bedrock aquifers during April 2018 are consistent with flow directions observed previously in both of these hydraulic units. As shown on Table 4, inferred vertical gradients between the shallow and deep portions of the overburden aquifer were all upwards this event with one exception. The inferred vertical gradient between the shallow and deep overburden aquifer in well pair MW-3/MW-3D is slightly downward. The inferred vertical gradients between the deep overburden and bedrock aquifers were also all upward this event. These patterns are generally consistent with previous sampling events.

The maximum upward gradient in the shallow/deep overburden well pairs this event was reported at 0.0181 feet per foot at well pair WC-4/WC-4D south of the regulated landfill.

The inferred lateral gradient in the overburden aquifer in the area of the closed landfill unit (aligned approximately in the direction of groundwater flow) is approximately 0.0045 feet/foot. The inferred lateral hydraulic gradient in the bedrock aquifer in the area of the closed landfill unit (aligned approximately in the direction of groundwater flow) is approximately 0.0077 feet/foot. Values of hydraulic conductivity (5 to 11 ft./day) and effective porosity (22 percent) for the overburden were determined in the 1986 Groundwater Assessment Program report². Hydraulic conductivity in the bedrock aquifer at wells MW-1BD and MW-7BD determined in 1990³ was reported to be approximately 0.11 ft./day. The porosity of crystalline bedrock aquifers is typically on the order of less than 10 percent. The rates of lateral groundwater flow in the overburden and bedrock aquifers were calculated using the following equation:

V = ki/n

Overburden $V_1 = 5$ feet/day x 0.0045 ft/ft /0.22 $V_1 = 0.102$ ft/day

Overburden $V_2 = 11 \text{ ft/day x } 0.0045 \text{ ft/ft/} 0.22$ $V_2 = 0.225 \text{ ft/day}$

Bedrock V= $0.11 \text{ ft/day} \times 0.0077 \text{ ft/ft} / 0.10$ V = 0.008 ft/day

Where:

V = Groundwater flow rate;

k = Hydraulic conductivity (as discussed above)

i = Hydraulic gradient (ranging in magnitude as described above); and,

n = Effective Porosity (as described above)

Based on the values listed above, the rate of lateral groundwater flow in the landfill area was estimated to range between ~ 0.102 feet/day and ~ 0.225 feet/day in the overburden and ~ 0.008 feet/day in the bedrock aquifer.

² Report entitled: "Whyco Chromium Groundwater Assessment Program," by Fuss & O'Neill, Inc., September 1986.

³ Report entitled: "Bedrock Aquifer Investigation, Whyco Chromium Company, Thomaston, Connecticut," by Fuss & O'Neill, Inc., July 1990.

Empirical data related to the concentration of hexavalent chromium in well cluster WC-1A after the circa 2005 closure of an in-ground plating wastewater sump suggested that velocity in the overburden may be up to one order of magnitude greater than these equations predict, most likely as a result of different (higher) hydraulic conductivity values.

4.00 ANALYTICAL RESULTS

Table 5 summarizes the results of groundwater sample analyses for parameters tested this quarter. Site standards for groundwater are included on this table for reference⁴ as required under RCSA 22a-449(c) - 105 (c)(3)⁵.

Groundwater analytes that were detected in concentrations exceeding the Reference and RSR Standards are highlighted on Table 5 and are discussed below.

4.10 QA/QC RESULTS

Reasonable Confidence Protocol Analyses Evaluation

The laboratory analytical reports contained in Appendix C include "Reasonable Confidence Protocols" (RCP) certification forms, narratives and RCP test results completed as a measure of the quality of the laboratory analytical results produced. GZA evaluated the RCP QA/QC certification forms and project narratives and the laboratory's assessment of RCP QC tests completed this event. All RCP performance criteria by the laboratory were reported within acceptable limits. Therefore, GZA believes this data set is suitable for its intended use.

4.20 REPORTING LIMITS

Laboratory reporting limits are summarized on Table 5. All reporting limits were below reference and RSR criteria for groundwater.

4.30 INORGANIC COMPOUNDS

Laboratory analytical results for parameters tested this event are summarized on Table 5. Reference Standards and/or Remediation Standard Regulation (RSR) criteria for pH, cadmium, total chromium, hexavalent chromium, nickel, and copper were exceeded in samples from at least one monitoring location, highlighted on Table 5 and are summarized below:

• pH was reported outside the EPA MCL standard range of 6.5 to 8.5 standard pH units (s.u.) and the CT DOHs standard range of 6.4 to 8.5 s.u. in 11 of the 15 wells sampled. As presented on Table 5, stabilized field measurements of pH from wells sampled ranged from 4.81 s.u. (MW-10D) to 8.75 s.u. (MW-4BD).

⁴ Although groundwater at the Site area is not used as a drinking water supply, the U.S. EPA Interim Drinking Water Standards, Maximum Contaminant Levels (MCLs), Secondary Maximum Contaminant Levels (SMCLs), and Connecticut Department of Health Services (DOHS) MCLs are cited as site Reference Standards for groundwater monitoring under the approved Groundwater Assessment Monitoring Program.

⁵ In accordance with Connecticut Hazardous Waste Regulations, groundwater constituent concentrations were compared to applicable numeric criteria established under the above EPA and DOHS standards and Connecticut Remediation Standard Regulations (i.e. Groundwater Protection Criteria, Surface Water Protection Criteria and Industrial/Commercial Groundwater Volatilization Criteria). Evaluation of the Site's overall compliance with the RSRs is beyond the scope of this study.

- Cadmium concentrations ranged from less than 0.0025 milligrams per liter (mg/L) in 11 of the 15 wells tested to 0.0155 mg/L (WC-1A). Concentrations of cadmium in groundwater samples from wells WC-1A (0.0155 mg/L), WC-2 (0.01125 mg/L), and MW-10M (0.0065 mg/L) exceeded the EPA Maximum Contaminant Limit (MCL) and RSR GWPC standard of 0.005 mg/L as well as the Surface Water Protection Criteria (SWPC) of 0.006 mg/L. Overburden samples WC-1A and WC-2 also exceeded the EPA Interim Drinking Water Standard (IDWS) of 0.01 mg/L.
- Total chromium concentrations in groundwater ranged from less than 0.010 mg/L in 4 of the 15 wells tested to 1.46 mg/L in well sample WC-1A. Total chromium concentrations exceeded the IDWS Standard of 0.05 mg/L in samples from wells MW-2 (0.107 mg/L), MW-3 (0.0975 mg/L), WC-1A (1.46 mg/L), WC-2 (0.577 mg/L), MW-10M (0.392 mg/L), and MW-11M (0.0562 mg/L). Chromium was also reported above the Connecticut Department of Health Services (DOHS) Water Quality Standard, the Groundwater Protection Criteria and the EPA MCL of 0.1 mg/L in wells MW-2, WC-1A, WC-2 and MW-10M.
- Concentrations of hexavalent chromium ranged from less than 0.01 mg/L in 5 of the 15 wells tested to 1.37 mg/L in overburden well sample WC-1A. Groundwater concentrations exceeded the SWPC of 0.11 mg/L in the samples from overburden wells MW-10M (0.35 mg/L), WC-1A (1.37 mg/L) and WC-2 (0.55 mg/L).
- Concentrations of trivalent chromium were calculated to be below reportable limits in 4 of 15 wells and less than the SWPC of 1.20 mg/L in the sampled wells. The highest calculated concentration of trivalent chromium was in well WC-1A at 0.09 mg/L.
- Nickel concentrations ranged from less than 0.025 mg/L in 3 of the 15 wells tested to 0.421 mg/L in well sample MW-2. Groundwater concentrations exceeded the EPA MCL, Connecticut DOHS Water Quality Standard and GWPC standard of 0.1 mg/L in samples from wells MW-2 (0.421 mg/L), WC-1A (0.369 mg/L), WC-2 (0.394 mg/L), WC-3 (0.226 mg/L), WC-4 (0.195), MW-8D (0.101 mg/L) and MW-10M (0.127 mg/L). Nickel was not reported above the SWPC of 0.88 mg/L during this sampling event.
- Copper concentrations ranged from less than 0.010 mg/L in 9 of the 15 wells to 0.147 mg/L in well sample WC-1A. The groundwater concentration exceeded the SWPC of 0.048 mg/L in the samples from wells WC-1A (0.147 mg/L) and WC-2 (0.0579 mg/L). Copper concentrations did not exceed any other applicable state or federal standards.
- Cobalt concentrations ranged from less than 0.010 mg/L in 13 of the 15 wells tested to 0.0153 mg/L in sample WC-1A. Presently there is not an established Reference Standard, EPA MCL, CTDOH, RSR GA-PMC or SWPC for cobalt.

5.00 DISCUSSION

5.10 STATISTICAL ANALYSES

As the facility is conducting this monitoring as part of an ongoing groundwater quality assessment program, no statistical analyses of the data were performed.

5.20 TRENDS AND HISTORICAL COMPARISONS

A chromium bearing wastewater sump with compromised integrity was identified and taken out-of-service by Whyco between February and May 2005. The sump was believed to be the source of the elevated hexavalent chromium and select other metals detected in RCRA wells WC-1A and WC-2 and supplemental well sets MW-10 and MW-11 beginning in or around 2000. Based on the inferred groundwater flow pattern, these overburden wells are located along the groundwater flow path from the sump.

Whyco evaluated and decommissioned all below grade wastewater sumps within the Site building. Only the initial sump was identified as a source of groundwater releases and its use was discontinued in 2005. Data indicate rapid improvement in groundwater quality in wells WC-1A and MW-10M beginning in or around 2007, earlier than was expected, suggesting hydraulic conductivities and/or porosities different than those estimated in the 1980s. Wells WC-1A, WC-2 and MW-10M, in the middle of the flow path, remain the most impacted wells. It appears the removal of this sub-slab process sump has addressed the major impacts from this release pathway although these wells, located most directly downgradient of either or both historical interior process areas and the landfill remain the most impacted. GZA will further assess these trends in the 2018 annual report.

5.30 ADEQUACY OF THE MONITORING PROGRAM

The existing monitoring network appears to be sufficient to observe the trends of the identified metals plume and to monitor potential impacts from the RCRA regulated waste management units. The next sampling event is scheduled for October 2018.

TABLES

TABLE 1 SUMMARY OF MONITORING WELL COMPLETION DETAILS WHYCO CHROMIUM COMPANY, INC. THOMASTON, CONNECTICUT

	ELE	VATION	S (Feet M	SL)	150	A WELL	7 71			NA COLOR	
Monitoring Well	Ground Surface	Top of Steel	Top of PVC	Borehole Depth (feet)(1)	Aquifer Type (2)	Screened Length (feet)(3)	Screened Elevations (feet MSL)	Nominal Well Diam. (inches)	Screen Slot Size (inches)	Completion Date	
MW-1BD	325.6	326.62		135	BR	61 OP	251-190	6	NA	3/16/88	
MW-1D	330.5	333.06	332.49	24 (R)	OB	20	326-306	2	0.010	1/31/86	
MW-2	327.5	329.16	328.69	22	OB	10	318-308	2	0.010	1/26/83	
MW-3	327.3	329.69	329.77	18	OB	10	320-310	2	0.010	1/26/83	
MW-3BD	327.5	330.03		125	BR	60 OP	262-202	6	NA	3/25/88	
MW-3D	327.4	329.62	329.53	57 (R)	OB	30	300-270	2	0.010	2/12/86	
MW-4BD	325.4	328.53		142	BR	88 OP	271-183	6	NA	3/17/88	
MW-5S	326.6	327.90	327.70	29	OB	10	307-297	2	0.010	11/28/94	
MW-5D	326.7	329.06	328.79	57	OB	10	282-272	2	0.010	11/23/94	
MW-6	323.0	325.36	324.58	42	OB	20	305-285	2	0.010	1/31/86	
MW-7BD	334.0	337.30	ent?	125	BR	53 OP	259-206	6	NA	3/23/88	
MW-8	328.2	328.19	327.81	22	OB	10	317-307	2	0.010	1/30/86	
MW-8D	328.15		327.94	100	OB	10		2	0.010	4/15/2003	
MW-9	328.6	328.52	328.07	22	OB	10	317-307	2	0.010	1/30/86	
MW-9D				60	OB	5		2	0.010	4/22/2003	
WC-1A (4)	325.5	327.32	327.39	35 (R)	OB	10	300-290	2	0.010	5/9/85	
WC-1D	325.2	327.43	326.83	52	BR	10	283-273	2	0.010	2/4/86	
WC-2	325.4	327.58	327.25	20	OB	15	320-305	2	0.010	5/8/85	
WC-3	324.7	326.36	326.05	22	OB	15	321-306	2	0.010	5/9/85	
WC-4	325.1	327.34	327.34	22	OB	15	320-305	2	0.010	5/10/85	
WC-4D	325.4	327.28	325.87	35 (R)	OB	20	312-292	2	0.010	2/3/86	
MW-10	327.68	201	327.25	15	OB	10	322-312	2	0.010	2/25/1998	
MW-10M	327.5	22	327.25	29	OB	5	304-299	2	0.010	4/22/2003	
MW-10D	327.49		327.23	50	OB	10	288-277	2	0.010	4/14/2003	
MW-11	327.88	V2	327.73	15	OB	10	322-312	2	0.010	2/26/1999	
MW-11M	327.69		327.44	39	OB	5	294-289	2	0.010	4/22/2003	
MW-11D	327.66	22	327.22	70	OB	10	268-258	2	0.010	4/21/2003	
MW-12	329.68	-	329.44	15	OB	10	324-314	2	0.010	2/25/1998	
MW-13	329.54		329.33	15	OB	10	324-314	2	0.010	2/26/1999	
MW-14	329.49		329.2	15	OB	10	324-314	2	0.010	2/25/1998	
MW-15	NA		327.97	16	OB	10	322-312	2	0.010	4/11/2003	
MW-15M	NA	##:	327.76	30	OB	5	303-298	2	0.010	4/11/2003	
MW-15D	NA		327.90	50	OB	10	288-278	2	0.010	4/10/2003	

Notes:

- 1. (R) indicates borehole terminated at refusal.
- 2. Aquifer types: OB = overburden; BR = bedrock
- 3. OP indicates bedrock wells without screen (open borehole)
- 4. WC-1 not completed, refusal at 6.3', May 1985, moved 2 ft North to WC-1A

TABLE 2 GROUNDWATER SAMPLING MATRIX 2018 GROUNDWATER MONITORING EVENTS WHYCO FINISHING TECHNOLOGIES, LLC THOMASTON, CONNECTICUT

Analyte	MW-1BD	MW-2	MW-3	MW-3BD	MW-4BD	MW-8*	MW-8D*	WC-1A	WC-2	WC-3	WC-4	MW-10M*	MW-10D*	MW-11M*	MW-11D*	EB-1	TRIP BLANK	Matrix Spike	Matrix Spike Dup	Total No. Samples
Field Observation & Screening			The State							TO VINS		1 2 2 7 July							3000	
pH	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X					15
Specific Conductance	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X					15
Inorganics						TAX Z										0.12		3 OVA 1		
Cadmium	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	0		X	X	18
Chromium, total	X	X	X	X	X	X	X	X	X	X	Х	X	X	X	X	0		X	X	18
Chromium, hexavalent	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	0		X	X	18
Nickel	X	X	X	X	X	X	X	X	X	Х	X	X	X	X	X	0		X	X	18
Cobalt	X	X	X	X	Х	X	X	X	X	X	X	X	X	X	X	0		X	X	18
Copper	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	. 0		X	X	18
Volatile Organic Compounds		100				STORY.	2131 / W		HE18-18	15 N. S	SE ST		Series (10		S 5-4-8		CONTRACTOR			1 P. Y.
Chlorinated VOCs	0	О	0	0	0			0	О	0	0					0	0	0	0	13

Note

* = Wells sampled as part of Connecticut Property Transfer Act investigations.

X = Parameter sampled during April and October event.

O = Parameter sampled during October event only.

Depth to groundwater measurements will be taken at all Site wells to allow construction of Site-wide groundwater coutour plans for the facility.

TABLE 3

SUMMARY OF WATER LEVEL OBSERVATION DATA FOR APRIL 25, 2018 WHYCO FINISHING TECHNOLOGIES,LLC THOMASTON, CONNECTICUT

MONITORING LOCATION		RENCE IS (feet MSL)	DEPTH TO WATER (feet)	WATER LEVEL ELEVATION (feet MSL)
	Top of Steel	Top of PVC	4/25/2018	4/25/2018
Overburden				
MW-1D	333.06	332.49	7.97 (PVC)	324.52
MW-2	329.16	328.69	9.18 (PVC)	319.51
MW-3	329.69	329.77	10.94 (PVC)	318.83
MW-3D	329.62	329.53	10.71 (PVC)	318.82
MW-5S	327.90	327.70	9.20 (PVC)	318.50
MW-5D	329.06	328.79	10.23 (PVC)	318.56
MW-6	325.36	324.58	5.73 (PVC)	318.85
MW-8	328.19	327.80	7.15 (PVC)	320.65
MW-8D	NA	327.94	8.88 (PVC)	319.06
MW-9	328.52	328.03	8.06 (PVC)	319.97
MW-9D	NA	NA	8.94 (PVC)	Undetermined
MW-10S	NA	327.25	7.89 (PVC)	319.36
MW-10M	NA	327.25	7.92 (PVC)	319.33
MW-10D	NA	327.23	7.96 (PVC)	319.27
MW-11S	NA	327.46	7.55 (PVC)	319.91
MW-11M	NA	327.44	7.96 (PVC)	319.48
MW-11D	NA	327.22	8.12 (PVC)	319.10
MW-12	NA	329.24	NM (PVC)	Undetermined
MW-13	NA	329.13	8.16 (PVC)	320.97
MW-14	NA	329.20	6.98 (PVC)	322.22
MW-15S	NA	327.97	8.23 (PVC)	319.74
MW-15M	NA	327.76	8.10 (PVC)	319.66
MW-15D	NA	327.90	8.24 (PVC)	319.66
WC-1A	327.32	327.39	9.05 (PVC)	318.34
WC-2	327.58	327.25	8.94 (PVC)	318.31
WC-3	326.36	326.05	9.14 (PVC)	316.91
WC-4	327.34	327.31	9.90 (PVC)	317.41
WC-4D	327.28	325.87	8.27 (PVC)	317.60
Bedrock	gail 1991 Link on			
MW-1BD	326.62	NA	7.72 (Steel)	318.90
MW-3BD	330.03	NA	11.17 (Steel)	318.86
MW-4BD	328.53	NA	9.67 (Steel)	318.86
MW-7BD	337.30	NA	17.02 (Steel)	320.28
WC-1D	327.43	326.83	8.47 (PVC)	318.36

Legend:

NA indicates data Not Available NM indicates data Not Measured

Notes:

- 1. All data are expressed in units of feet.
- 2. The survey elevations shown are expressed in units of feet above Mean Sea Level (MSL).
- 3. Water level observations were made by GZA on April 25, 2018.
- 4. PVC = Water-level measurements in well were made relative to top of PVC well riser.
- 5. Steel = Water-level measurements in well were made relative to top of steel well casing.

 $\frac{\text{TABLE 4}}{\text{VERTICAL GROUNDWATER POTENTIALS}}$ APRIL 2018 MONITORING RESULTS
WHYCO FINISHING TECHNOLOGIES, LLC
THOMASTON, CONNECTICUT

MONITORING	AQUIFER	SCREENED INTERVAL (ft)	GROUNDWATER ELEVATION	HYDRAULIC POTENTIAL (ft)	VE	VERTICAL GRADIENT (fv/ft)	COMPARED WELLS
MW-3 MW-3D MW-3BD	Overburden Overburden Bedrock	10 - 20 27 - 57 65 - 125	318.83 318.82 318.86	-0.01	-0 0004	DOWNWARD UPWARD	MW-3D - MW-3 MW-3BD - MW3D
WC-2 WC-1A WC-1D MW-1BD	Overburden Overburden Bedrock Bedrock	5 - 20 23 - 33 42 - 52 74 - 135	318,31 318,34 318,36 318,90	0.03 0.02 0.54	0,0019 0,0011 0,0094	UPWARD UPWARD UPWARD	WC-1A - WC-2 WC-1D - WC-1A MW-1BD - WC-1D
WC-4 WC-4D MW-4BD	Overburden Overburden Bedrock	5 - 20 13 - 33 54 - 142	317.41 317.60 318.86	0.19 1.26	0,0181	UPWARD	WC-4D - WC-4 MW-4BD - WC-4D
MW-5S MW-5D	Overburden Overburden	19-29	318,50 318.56	90.0	0,0023	UPWARD	MW-5D - MW-5S

Legend:

NA indicates data Not Available NM indicates data Not Measured

- Notes:

 1. All data are expressed in units of feet.

 2. The survey elevations shown are expressed in units of feet above Mean Sea Level (MSL).

 3. Water level observations were made by GZA on April 25, 2018.

 4. A negative hydraulic potential or vertical gradient indicates a downward gradient.

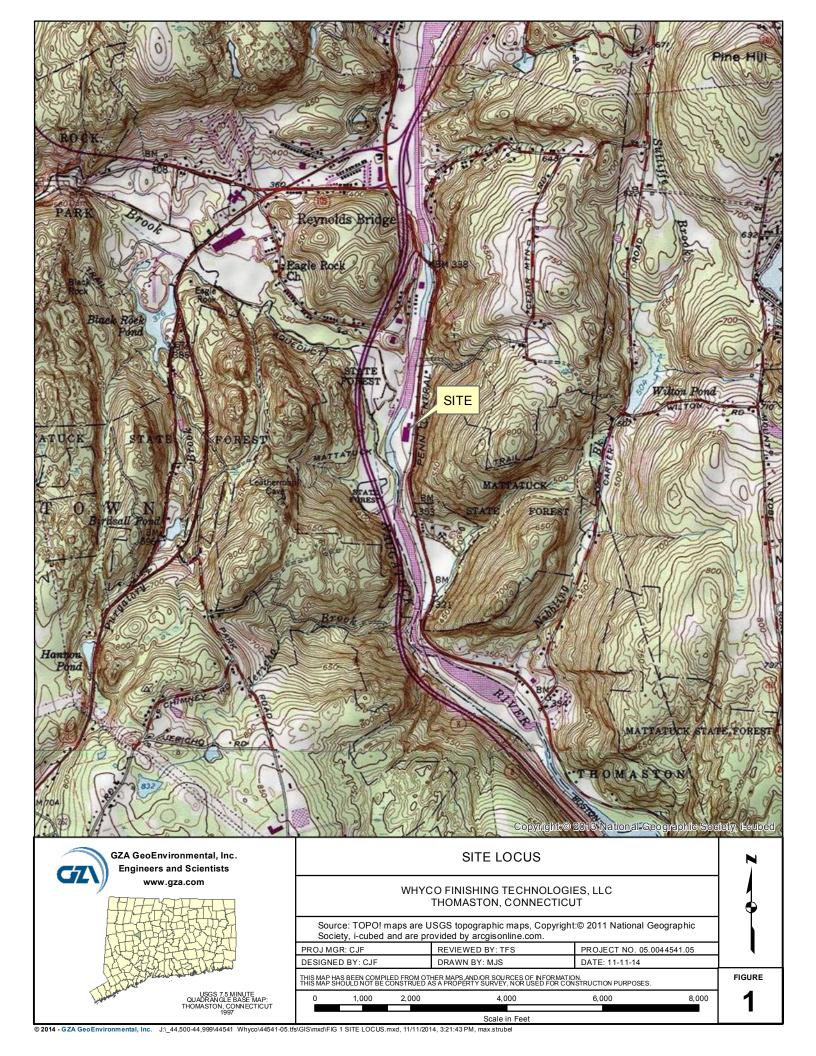
TABLE 5 SUMMARY OF GROUNDWATER SAMPLE RESULTS APRIL 2018 SAMPLING EVENT

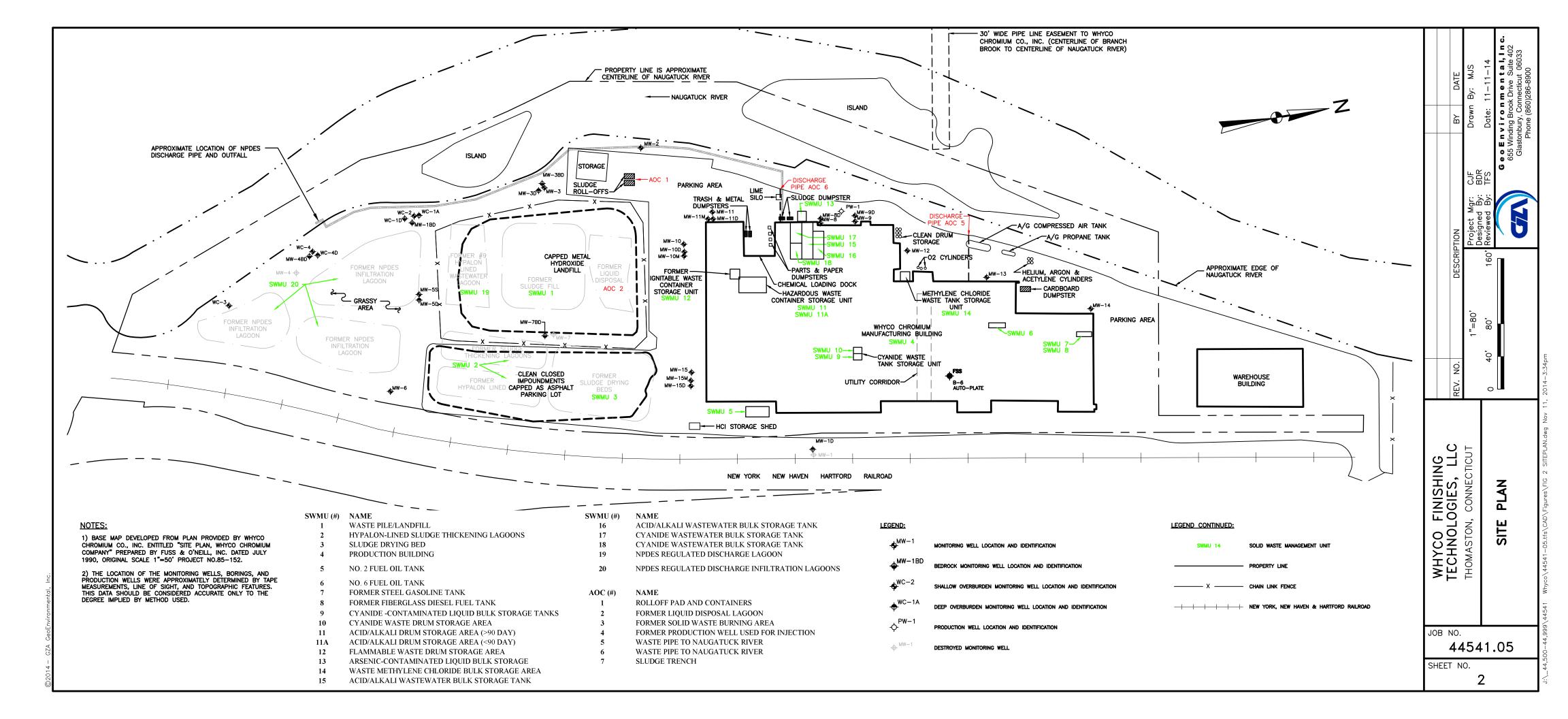
WHYCO FINISHING TECHNOLOGIES, LLC THOMASTON, CONNECTICUT

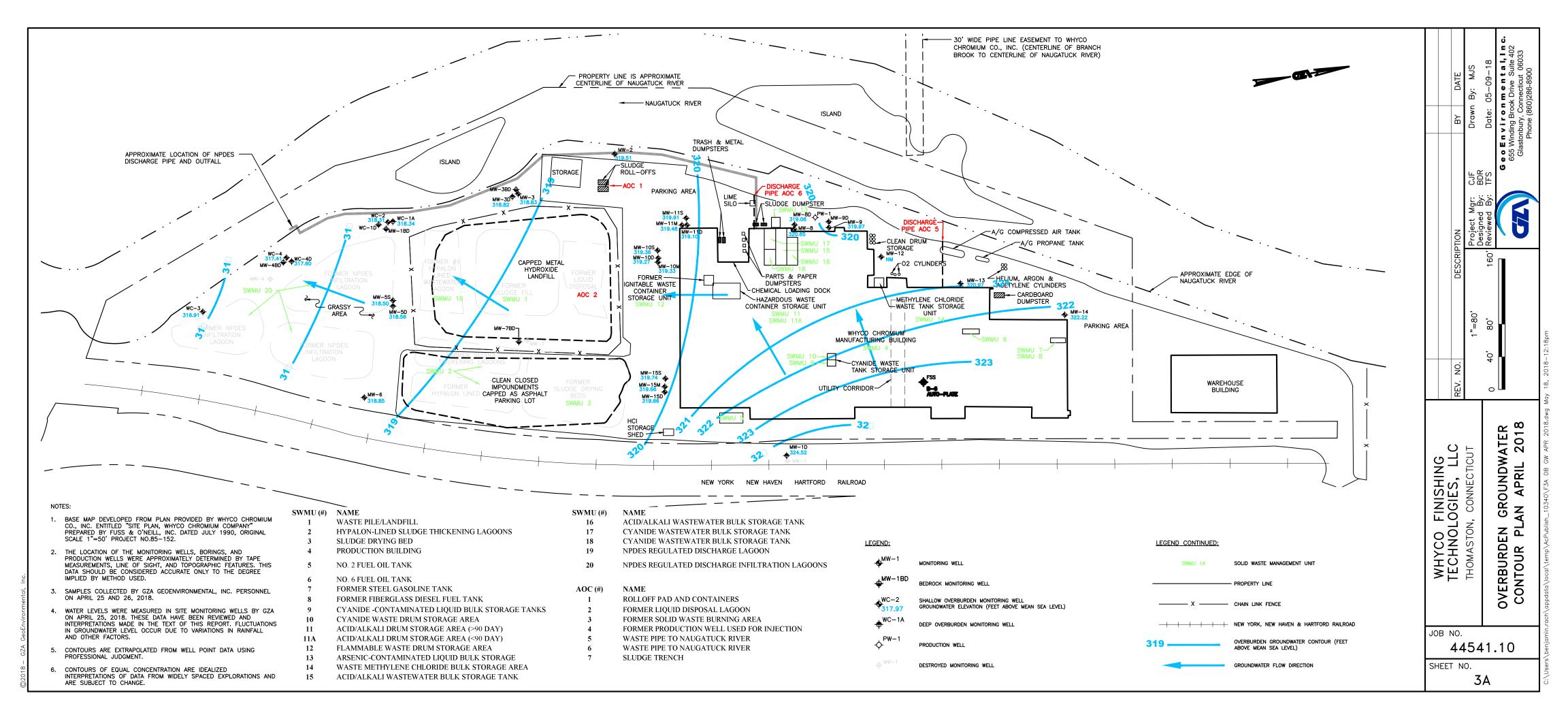
ANALYTE	метнор	UNITS								kala.	MW-1BD	MW-2	MW-3	MW-3BD	MW-4BD	MW-8**	MW-8D**	MW- 10M**	MW-10D**	MW- 11M^*	MW-11D**	WC-1A	WC-2	WC-3	WC-4
Field Observations & Screening		- 75 E 15 W	A	В	C	D	E	F	G	H	THE SO	UN ELEC		175							III SLABA			WIS TOWN	
pH	FIELD	standard units	NE	NE	6.5 to 8.5	6.4 to 8.5	NE	NE	NA	NA	8.39	6.61	6.42	8.21	8.75	6.43	5.98	5.33	4.81	5.97	6.27	5.34	5,22	6.11	6.61
Specific Conductance	FIELD	μS	NE	NE	NE	NE	NE	NE	NA	NA	441	296	264	752	123	242	242	188	291	250	284	220	192	180	225
Metals						ME SE		V			1													-	- 11 - 33
Cadmium	EPA 3005A/6010B	mg/L	0.010	0.005	NE	NE	0.005	0.006	NA	NA	<0.0025	< 0.0025	< 0.0025	<0.0025	<0.0025	<0.0025	<0.0025	0.0065	0.0031	< 0.0025	<0.0025	0.0155	0.01125	< 0.0025	< 0.0025
Chromium	EPA 3005A/6010B	mg/L	0.05	0.10	NE	0.10	0.10	NE	NA	NA	< 0.01	0.107	0.0975	< 0.01	< 0.01	0.028	0.048	0.392	0.0359	0.0562	< 0.01	1.46	0.577	0.0449	0.0404
Chromium, hexavalent	EPA 7196	mg/L	NE	NE	NE	NE	NE	0.11	NA	NA	< 0.01	0.09	0.09	< 0.01	< 0.01	0.02	0.04	0.35	< 0.01	0,05	< 0.01	1.37	0.55	0,04	0.04
Chromium, Trivalent	Calculated 3	mg/L	NE	NE	NE	NE	NE	1,20	NA	NA	<0.01	0.0170	0.0075	<0.01	<0.01	0.008	0.0080	0.042	0.0359	0.0062	<0.01	0.09	0.027	0.0049	0.0004
Nickel	EPA 3005A/6010B	mg/L	NE	0.10	NE	0.10	0.10	0.880	NA	NA	< 0.025	0.421	0.0358	0,0809	< 0.025	0.0566	0.101	0.0765	0.127	0.0981	<0.025	0.369	0.394	0.226	0.195
Copper	EPA 3005A/6010B	mg/L	NE	1	1	1	1.3	0.048	NA	NA	< 0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.01	0.0123	<0.01	0.0119	<0.01	<0.01	0.147	0.0579	0.0259	0.0259
Cobalt	EPA 3005A/6010B	mg/L	NE	NE	NE	NE	NE	NE	NA	NA	< 0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.0153	0.0143	< 0.01	< 0.01

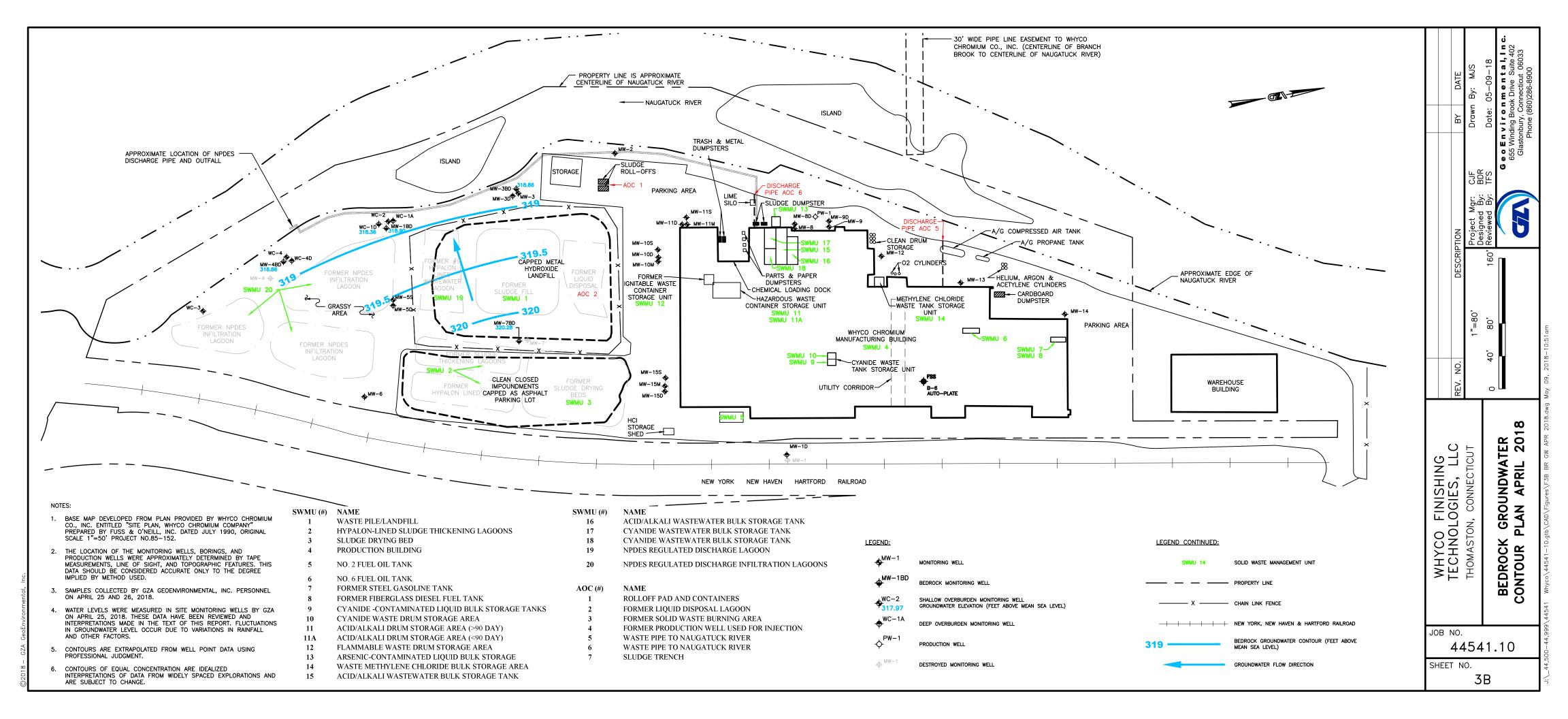
- A. EPA (40 CFR 265) Appendix III Interim Drinking Water Standards.
- B. EPA National Primary Drinking Water Standards (Maximum Contaminant Level) and Maximum Contaminant Level Goals (italics).
- C. EPA Secondary Drinking Water Standards.
- D. Connecticut Department of Health Water Quality Standards or action levels.
- E. Connecticut Groundwater Protection Criteria.
- F. Connecticut Surface Water Protection Criteria
- G. Connecticut Residential Groundwater Volatilization Criteria
- H. Connecticut Industrial/Commercial Groundwater Volatilization Criteria
- NE indicates standard Not Established.
- NT indicates Not Tested.
- NS indicates sample was not collected or analyzed due to active extraction pump in well,
- <1 indicates a non-detection and the reporting limit.

Shaded cell in bold indicates an exceedance of one or more of the above standards.


 μS = micro Siemens, mg/L = milligrams per liter


- TB = Trip blank sample.
- ** Wells sampled under Propery Transfer Act investigations,


- Samples were collected by GZA GeoEnvironmental, Inc on April 25 and 26, 2018.
 Laboratory analyses were performed by ESS Laboratory and Phoenix Environmental Laboratories.
- A complete list of laboratory data sheets is included in Appendix C of this report.
- 3. Trivalent Chromium is calculated by subtracting hexavalent chromium from total chromium concentrations.



FIGURES

APPENDIX A LIMITATIONS

USE OF REPORT

1. GZA GeoEnvironmental, Inc. (GZA) prepared this report on behalf of, and for the exclusive use of our Client for the stated purpose(s) and location(s) identified in the Proposal for Services and/or Report. Use of this report, in whole or in part, at other locations, or for other purposes, may lead to inappropriate conclusions; and we do not accept any responsibility for the consequences of such use(s). Further, reliance by any party not expressly identified in the agreement, for any use, without our prior written permission, shall be at that party's sole risk, and without any liability to GZA.

STANDARD OF CARE

- 2. GZA's findings and conclusions are based on the work conducted as part of the Scope of Services set forth in the Proposal for Services and/or Report and reflect our professional judgment. These findings and conclusions must be considered not as scientific or engineering certainties, but rather as our professional opinions concerning the limited data gathered during the course of our work. Conditions other than described in this report may be found at the subject location(s).
- 3. GZA's services were performed using the degree of skill and care ordinarily exercised by qualified professionals performing the same type of services, at the same time, under similar conditions, at the same or a similar property. No warranty, expressed or implied, is made. Specifically, GZA does not and cannot represent that the Site contains no hazardous material, oil, or other latent condition beyond that observed by GZA during its study. Additionally, GZA makes no warranty that any response action or recommended action will achieve all of its objectives or that the findings of this study will be upheld by a local, state or federal agency.
- 4. In conducting our work, GZA relied upon certain information made available by public agencies, Client and/or others. GZA did not attempt to independently verify the accuracy or completeness of that information. Inconsistencies in this information which we have noted, if any, are discussed in the Report.

SUBSURFACE CONDITIONS

- 5. The generalized soil profile(s) provided in our Report are based on widely-spaced subsurface explorations and are intended only to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized, and were based on our assessment of subsurface conditions. The composition of strata, and the transitions between strata, may be more variable and more complex than indicated. For more specific information on soil conditions at a specific location refer to the exploration logs. The nature and extent of variations between these explorations may not become evident until further exploration or construction. If variations or other latent conditions then become evident, it will be necessary to reevaluate the conclusions and recommendations of this report.
- 6. Water level readings have been made, as described in this Report, in and monitoring wells at the specified times and under the stated conditions. These data have been reviewed and interpretations have been made in this report. Fluctuations in the level of the groundwater however occur due to temporal or spatial variations in areal recharge rates, soil heterogeneities, the presence of subsurface utilities, and/or natural or artificially induced perturbations. The observed water table may be other than indicated in the Report.

COMPLIANCE WITH CODES AND REGULATIONS

7. We used reasonable care in identifying and interpreting applicable codes and regulations necessary to execute our scope of work. These codes and regulations are subject to various, and possibly contradictory, interpretations. Interpretations and compliance with codes and regulations by other parties is beyond our control.

SCREENING AND ANALYTICAL TESTING

- 8. GZA collected environmental samples at the locations identified in the Report. These samples were analyzed for the specific parameters identified in the report. Additional constituents, for which analyses were not conducted, may be present in soil, groundwater, surface water, sediment and/or air. Future Site activities and uses may result in a requirement for additional testing.
- 9. Our interpretation of field screening and laboratory data is presented in the Report. Unless otherwise noted, we relied upon the laboratory's QA/QC program to validate these data.
- 10. Variations in the types and concentrations of contaminants observed at a given location or time may occur due to release mechanisms, disposal practices, changes in flow paths, and/or the influence of various physical, chemical, biological or radiological processes. Subsequently observed concentrations may be other than indicated in the Report.

INTERPRETATION OF DATA

11. Our opinions are based on available information as described in the Report, and on our professional judgment. Additional observations made over time, and/or space, may not support the opinions provided in the Report.

ADDITIONAL INFORMATION

12. In the event that the Client or others authorized to use this report obtain additional information on environmental or hazardous waste issues at the Site not contained in this report, such information shall be brought to GZA's attention forthwith. GZA will evaluate such information and, on the basis of this evaluation, may modify the conclusions stated in this report.

ADDITIONAL SERVICES

13. GZA recommends that we be retained to provide services during any future investigations, design, implementation activities, construction, and/or property development/ redevelopment at the Site. This will allow us the opportunity to: i) observe conditions and compliance with our design concepts and opinions; ii) allow for changes in the event that conditions are other than anticipated; iii) provide modifications to our design; and iv) assess the consequences of changes in technologies and/or regulations.

APPENDIX B SAMPLING FIELD DATA SHEETS

WATER LEVEL MEASUREMENT LOG PROJECT GZA GeoEnvironmental, Inc. Date: 4/25/2018 File No. 05.0044541.10 655 Winding Brook Dr, Suite 402 Project Name Whyco Technologies Glastonbury, CT 06033 Phone: (860) 286-8900 Thomaston, CT GZA Staff/Sampler Location: BR MEASURING EQUIPMENT Abbreviations: Air Temperature (°F): 50's PVC = Top of PVC well riser. Measuring Device: Weather Conditions: Rain Keck Stl = Top of steel well casing/protector. FiberglassTape Electric Tape Interface Meter Other Grnd = Relative to ground surface. Depth to Total Depth Measmnt. DNAPL LNAPL Correct. of Well Time Well/Stream Water Datum Thickness Thickness Factor Comments/Well Condition PVC/Stl/Grnd Gauge I.D. (ft) (ft) (ft) (ft) (ft) PVC 800 MW-6 5.73 27.5 Good MW-5S 9,20 30.10 PVC Good Good MW-5D 10.23 56.60 PVC MW-7BD 17.02 127 STL Good WC-3 9.14 20.4 PVC Good WC-4 9.90 21.9 PVC Good WC-4D 8.27 33.4 PVC Good 9.67 STL MW-4BD 144 MW-1BD 7.72 135 STL Good WC-1A PVC 9.05 36.65 Good WC-2 8.94 22.05 PVC Good WC-1D 8.47 52.9 PVC Good MW-3D 10.71 56.5 PVC Good MW-3S 10.94 PVC Good MW-3BD 11.17 124 STL MW-15D 8:24 **PVC** Good MW-15M 8.10 PVC Good MW-15S 8.23 16.4 PVC Good MW-10M 7.92 28.9 **PVC** Good MW-10D 7.96 49_4 PVC Good MW-10S 7.89 14.5 PVC Good MW-2 9.18 16.85 PVC Good MW-11S 7.55 14.8 PVC Good MW-11M 7.96 38.6 PVC Good MW-11D 8.12 69.9 PVC Good

WATER LEVEL MEASUREMENT LOG 4/25/2018 Date: GZA GeoEnvironmental, Inc. **PROJECT** Date: File No. 05.0044541.10 655 Winding Brook Dr, Suite 402 Project Name Whyco Technologies Glastonbury, CT 06033 Phone: (860) 286-8900 Location: Thomaston, CT GZA Staff/Sampler BR MEASURING EQUIPMENT Abbreviations: Air Temperature (°F): PVC = Top of PVC well riser. Measuring Device: Stl = Top of steel well casing/protector. Weather Conditions: Rain Keck FiberglassTape Interface Meter Grnd = Relative to ground surface Electric Tape Other Total Depth Measmnt. DNAPL LNAPL Depth to Correct. of Well Thickness Thickness Comments/Well Condition Time Water Datum Well/Stream Factor PVC/Stl/Gmd (ft) (ft) (ft) Gauge I.D. (ft) (ft) 99.8 PVC MW-8D 8.88 Good MW-8 7.15 15,50 PVC Good MW-9 8.06 17,20 PVC Good MW-9D 8.94 59.53 PVC Good MW-12 NM PVC Truck on well MW-13 PVC Good 8.16 14.4 MW-14 6.98 14.9 PVC Good 7.97 25,5 PVC 935 MW-1D Good

GZA GeoEnvironmental, Inc. 655 Winding Brook Drive, Suite 402

GROUNDWATER SAMPLING DATA SHEET

Well ID:	MW-1BD
Sample Date:	4/25/2018

Glastonbury, CT 06033								Sample Date:		4/25/2018
PROJECT INFORMATI	ION									
	Project Name:		Whyco Technolo	ogies	Location	: Tho	naston, CT	File No.	05.0044	4541,10
WATER LEVEL OBSER Reference Point of Measure	ement: PVC I		Measurement :		Reference E	5/2018 Elevation (feet	(1)	Collector Initial	ľ	BDR
Well Completion: Difference Between PVC a Well Screened Interval (fbg HACH Kit Type	and Casing Top (f	Road Bo	75-135	-	Difference i	vation (feet) n Elevation (vation - Ground ethod		325,60 1.02		
Total Length of Well (feet)	;	1	om Ref. Point 35.00		3.98]		Difference in Eleva	_	
Depth to Water (feet): Standing Water in Well (fe	et):		7.72 27.28		7.28	-	d Sample Volum ers by 0.2642 to g		gallons or [liters 🗸
Well Condition: Protective Well head vapors: VOCs (-	good; Lock	- <u>Yes / No;</u> Exp ppmv	ansion Cap - <u>\</u> Methane (FII		D - <u>Yes / No</u>	; Concrete Collar ppmv	_		ppmv
Sample Method: Bail Denty Type: Electronic	☐ Grab ☐ ric Submersible	_	Low Flow Peristaltic		od: Bail [Bladder Pu		✓ Flow-Thru (Other: □	Cell Vol: (460mI	Other:	
CALIBRATION DATA: Specific Conductance: pH (s.u.): DO (mg/L): Turbidity (NTU):	Instrument Mod Instrument Mod Instrument Mod Instrument Mod	del: del:	YSI 556 YSI 556 YSI 556 Micro TPI	Standard Sol Reading: p Standard Sol Standard Sol	H 4: (1/2) ution:	141	mp/time (#1) 12. Reading (#1) PH 7: (1/2) Reading (#1) Reading (#1)		Reading (#2) pH 10: (1/2) (#2)	10.05
ORP (mvolts:)	Instrument Mo	del:	YSI 556	Standard Sol	ution:	237.	5 Reading (#1)	237.5	(#2)	
INSTRUMENT MEASU	REMENTS:									
Parameters	Statle*	1	22	3	4	5	6	7	8	Stabilized
Time: Depth to Water (ft)	1115	1130	1133	1136						1136
below Ref. point (drawdown <0,3)	7.72	7.75	7.75	7,75						7.75
Volume Purged (L)		2,25	2,7	3,15						3,15
Purge Rate (ml/min)		150	150	150						150
Temperature (3%) °C		11:67	11.70	11.71						11,71
Spec. Cond. (3%) (µS)		442	441	441						441
Salinity (3%) (ppt)		0,21	0.21	0.21						0.21
DO (10%) (mg/L)		0.51	0.49	0.49						0.49
pH (+/- 0.1) (s.u.)		8.45	8,41	8.39						8.39
ORP** (+/- 10) (mvolts)		-57.4	-55.6	-52.3						-52.3
Turbidity (<5) (10%) (ntu)		4.19	4.10	3.86	ĺ					3.86
*Static measurement is **If ORP is negative and				er than 10 mg/	'L; recalibrate	and/or clean	instrument. If pe	ersistent call PM.		
SAMPLING INFORMAT	<u>FION</u> San	nple Depth: (below		f. ptX)	Sample Time:	: 113	6	Sample ID:	MW-1BD	
Analysis	Method		No. Bottles		e Type	Vol.	Preservation		Handling	
Metals Hex Chrom			1		estic estic	250 ml	HNO3		Cooler/Ice Cooler/Ice	
MS/MSD										
NOTES/OBSERVATION	<u>IS:</u>									

NA

Well Condition:

Good

Clear

Odor: None

Color:

GZA GeoEnvironmental, Inc. 655 Winding Brook Drive, Suite 402

GROUNDWATER SAMPLING DATA SHEET

Well ID: MW-2

Glastonbury, CT 06033								Sample Date:		4/25/2018
PROJECT INFORMATION	<u>ON</u>									
	Project Name:	V	Vhyco Technol	ogies	_ Location:	Thom	naston, CT	File No.	05.0044	1541.10
WATER LEVEL OBSERV Reference Point of Measurer Well Completion: Difference Between PVC an Well Screened Interval (fbg) HACH Kit Type	ment: PVC F Stand Pipe d Casing Top (for	Road Bo		Ground	Reference El Ground Elev Difference in	ration (feet) n Elevation (for ration - Ground E	-	Collector Initial 328.49 327.50 0.59	8	BDR
Total Length of Well (feet): Depth to Water (feet): Standing Water in Well (feet) Well Condition: Protective of Well head vapors: VOCs (P	Casing - poor / g	1		8 9	7.91 59 32 Yes/ No ; Well II	Total Purged Multiply lite		e 3,15 et gallons - <u>Yes / No;</u> Well	gallons or	
Sample Method: Bail Pump Type: Electri CALIBRATION DATA: Specific Conductance: pH (s.u.): DO (mg/L): Turbidity (NTU): ORP (mvolts:)	Grab Construment Model Instrument Mode	del: del: del: del:	Low Flow Yeristaltic YSI 556 YSI 556 YSI 556 Micro TPI YSI 556		Bladder Pur ution: H 4: (1/2) ution: ution:	Tem 1413 2 100% 1000/10/0.2	Other: np/time (#1) 12.0	01/0690	Temp/time (Reading (#2) pH 10: (1/2) (#2)	- (#2)
INSTRUMENT MEASUR	EMENTS:									
Parameters	Static*	1	2	3	4	5	6	7	8	Stabilized
Time:	1015	1030	1033	1036						1036
Depth to Water (ft) below Ref. point (drawdown <0.3) Volume Purged (L)	9.18	9.21	9,21	9.21						9.21
Purge Rate (ml/min)		150	150	150						150
Temperature (3%) °C		6,97	7.00	6.91						6.91
Spec. Cond. (3%) (µS)		299	297	296						296
Salinity (3%) (ppt)		0,14	0.14	0.14						0.14
DO (10%) (mg/L)		3.41	3.42	3.48						3,48
pH (+/- 0,1) (s.u.)		6.57	6.59	6.61						6,61
ORP** (+/- 10) (mvolts)		24.3	23.1	21.1						21.1
Turbidity (<5) (10%) (ntu)		0.01	0.01	0.01						0.01
*Static measurement is be **If ORP is negative and		of equipme	nt.		L: recalibrate	and/or clean i	nstrument. If pe	rsistent call PM		0.01
SAMPLING INFORMAT Analysis Metals Hex Chrom	ION Sam	nple Depth: (below g	17 grade or re No. Bottles	f. ptX) Bottle Pla	sample Time: e Type sstic	1036 Vol. 250 ml	Preservation HNO3	Sample ID:	MW-2 Handling Cooler/Ice Cooler/Ice	

NOTES/OBSERVATIONS:

Product Thickness: NA Well Condition: Good Color: Clear Odor: None

GZA GeoEnvironmental, Inc. 655 Winding Brook Drive, Suite 402 Glastonbury, CT 06033

OUNDWATER SAMPLING DATA SHEET		
	Well ID:	MW-3
	Sample Date:	4/26/2018

PROJECT INFORMATION	_	V	Vhyco Technolo	gies	Location:	Thon	naston, CT	File No.	05.0044	541.10
WATER LEVEL OBSER Reference Point of Measure Well Completion: Difference Between PVC at Well Screened Interval (fbg HACH Kit Type	ment: PVC F Stand Pipe nd Casing Top (for	Road Bo	Measurement I bel Casing x 0.08 8-18	Ground	Reference E Ground Elev Difference in	n Elevation (f vation - Ground I	eet):	Collector Initial 329.27 327.30 2.47	S:	BDR
Tetal Levelle of Well (food)			om Ref. Point	Depth Below		(Reference Po	int Measurement -	Difference in Eleva	ation)	
Total Length of Well (feet): Depth to Water (feet): Standing Water in Well (fee			0.98 5.92	8.4	1 7	-	d Sample Volume rs by 0,2642 to g		gallons or	liters 🗸
Well Condition: Protective Well head vapors: VOCs (I			Yes / No; Expa ppmv	nsion Cap - <u>Yo</u> Methane (FID		D - <u>Yes / No;</u>				ppmv
	Grab ☐ ic Submersible	-	Low Flow ✓ Peristaltic ✓		od: Bail [Bladder Pu		✓ Flow-Thru C Other: □	eli Vol: (460mI	L) 🗸 Other:	Δ
CALIBRATION DATA: Specific Conductance: pH (s.u.): DO (mg/L): Turbidity (NTU): ORP (mvolts:)	Instrument Mod Instrument Mod Instrument Mod Instrument Mod Instrument Mod	del: del; del;	YSI 556 YSI 556 YSI 556 Micro TPI YSI 556	Standard Solu Reading: pF Standard Solu Standard Solu Standard Solu	H 4: (1/2) ation: ation:	141 1009 1000/10/0.	np/time (#1) 12.0 3 Reading (#1) 4 pH 7: (1/2) 6 Reading (#1) 2 Reading (#1) 6 Reading (#1)	7 100.00%	(#2)	
INSTRUMENT MEASUR	REMENTS:									
Parameters	Statie*	1	2	3	4	5	6	7.	8	Stabilized
Depth to Water (ft) below Ref. point	838	853	856	859						859
(drawdown <0.3) Volume Purged (L)	10.95	10.97	2.7	3.15						3.15
Purge Rate (ml/min)		150	150	150						150
Temperature (3%) °C		10,17	10,17	10.19						10,19
Spec. Cond. (3%) (µS)		264	264	264						264
Salinity (3%) (ppt)		0.13	0.13	0.13						0.13
OO (10%) (mg/L)		1,52	1,48	1.49						1.49
oH (+/- 0.1) (s.u.)		6.35	6.39	6.42			-			6.42
ORP** (+/- 10) (mvolts)		27.1	25.9	25.3						25.3
Turbidity (<5) (10%) (ntu) *Static measurement is b	efore installation	0.01 of equipme	0.01 nt.	0.01			ļ ,		-	0.01
**If ORP is negative and	DO is greater th	an 2 mg/L o	r if DO is greate	er than 10 mg/I	_; recalibrate	and/or clean	instrument. If pe	rsistent call PM.		
SAMPLING INFORMAT	TION San	nple Depth: (below)	15' grade or ref		ample Time:	859	9	Sample ID:	MW-3	
Analysis Metals Hex Chrom	Method		No. Bottles	Bottle Pla: Pla:		Vol. 250 ml	Preservation HNO3		Handling Cooler/Ice Cooler/Ice	
IVA CIIIOIII			I.	ria	aut	250 IIII			Cooleirice	
) ē				
NOTES/OBSERVATION:	<u>S:</u>									
Color: Clear	Odor.	None	Product Thickn	ess:	NA		Well Condition		Good	

(Call PM if present)

GZA GeoEnvironmental, Inc. 655 Winding Brook Drive, Suite 402 Glastonbury, CT 06033

CONDWATER SAMILLING DATA SHEET		
	Well ID:	MW-3BD
	Sample Date:	4/26/2018

PROJECT INFORMATION		V	Whyco Technolo	gies	Location:	Tho	omaston, CT	File No.	05,0044	1541,10
WATER LEVEL OBSER Reference Point of Measure Well Completion: Difference Between PVC ar Well Screened Interval (fbg) HACH Kit Type	ment: PVC F Stand Pipe d Casing Top (for	Road Bo	Measurement I cel Casing \(\square\) \(\sq	Ground [A/25 Reference Elev Difference in (Reference Elev Other Field Met	ration (feet) n Elevation (ration - Ground	(feet):	Collector Initial 330,07 327,50 2,53		BDR
Total Length of Well (feet): Depth to Water (feet): Standing Water in Well (fee	t):	1	om Ref. Point 24,00 11,17 12,83	8.	1.47 64 2.83	Total Purg Multiply li	Point Measurement - 1 ed Sample Volume ters by 0,2642 to ge	4.2 et gallons	gallons or	liters 🗸
Well Condition: Protective Well head vapors: VOCs (F		ood; Lock -		nsion Cap - <u>Y</u> Methane (FII		D - <u>Yes / No</u>			- poor / good	ppmv
	Grab ☐ ic Submersible		Low Flow Peristaltic		od: Bail [Bladder Pu		✓ Flow-Thru C Other: □	ell Vol: (460mI	C) Other:	
CALIBRATION DATA: Specific Conductance: pH (s.u.): DO (mg/L): Turbidity (NTU): ORP (mvolts:)	Instrument Mod Instrument Mod Instrument Mod Instrument Mod Instrument Mod	del: del: del:	YSI 556 YSI 556 YSI 556 Micro TPI YSI 556	Standard Soli Reading: pl Standard Soli Standard Soli Standard Soli	H 4: (1/2) ution: ution:	1000/10/0	emp/time (#1) 12.0 13 Reading (#1) 4 pH 7: (1/2) 6 Reading (#1) 1.2 Reading (#1) 7.5 Reading (#1)	7 100.00%	Reading (#2) pH 10: (1/2)	10.05
INSTRUMENT MEASUR	REMENTS:									
Parameters	Statie*	1	2	3	4	5	6	7.	8	Stabilized
Time: Depth to Water (ft) below Ref. point (drawdown <0.3)	905	920 11.19	923	926 11,19						926 11.19
Volume Purged (L)		3.0	3.6	4.2						4.2
Purge Rate (ml/min)		200	200	200						200
Temperature (3%) °C		12,38	12.34	12,31						12,31
Spec. Cond. (3%) (µS)		751	749	752						752
Salinity (3%) (ppt) DO (10%) (mg/L)		0.37	0.37	0.37						0.37
pH (+/- 0.1) (s.u.)		0,37	0.36	0,36						0,36
ORP** (+/- 10) (mvolts)		8.13	8.19	8.21						8.21
Turbidity (<5) (10%) (ntu) *Static measurement is b	efore installation	-150.3 1,96 of equipme	-155.3 1.73 nt.	-156.2 1.54						-156.2 1.54
**If ORP is negative and	DO is greater th	ian 2 mg/L o	r if DO is greate	er than 10 mg/	L; recalibrate	and/or clear	n instrument. If per	sistent call PM.		
SAMPLING INFORMAT	ION San	nple Depth: (below g	95' grade or ref		ample Time:	92	26	Sample ID:	MW-3BD	
Analysis Metals Hex Chrom	Method		No. Bottles	Pla	e Type stic	Vol. 250 ml 250 ml	Preservation HNO3		Handling Cooler/Ice Cooler/Ice	
NOTES/OBSERVATIONS	<u>S:</u>									
Color: Clear	Odor:	None	Product Thickn	ess:	NA		Well Condition:		Good	

Product Thickness: (Call PM if present)

GZA GeoEnvironmental, Inc. 655 Winding Brook Drive, Suite 402 Glastonbury, CT 06033

O DITTIL DITEDLE		
	Well ID:	MW-4BD
	a 1 D :	1 /0 / /0 0 4 0

Glastonbury, CT 06033								Sample Date:		4/26/2018
PROJECT INFORMATI	ON									
	Project Name:	V	hyco Technolo	gies	Location	: Thon	naston, CT	File No.	05,0044	1541,10
WATER LEVEL OBSER Reference Point of Measure Well Completion: Difference Between PVC a Well Screened Interval (fbg HACH Kit Type	ement: PVC I Stand Pipe ond Casing Top (for	Riser Ster Road Boreet):	_	Ground	Reference E Ground Ele Difference i	vation (feet) in Elevation (f evation - Ground I		Collector Initial 328.53 325.40 3.13		BDR
Total Length of Well (feet) Depth to Water (feet): Standing Water in Well (feet) Well Condition: Protective Well head vapors: VOCs (et): Casing - poor / s	14		131	8.07 54 53 es/ No ; Well	Total Purged Multiply lite ID - <u>Yes / No;</u>	d Sample Volumers by 0.2642 to g	et gallons - <u>Yes / No;</u> Well	gallons or	_
Sample Method: Bail Depump Type: Electric	☐ Grab ☐ ric Submersible	_	Low Flow Z Peristaltic Z		od: Bail [Bladder Pu		Flow-Thru (Cell Vol: (460mI	C) I Other:	
CALIBRATION DATA: Specific Conductance: pH (s.u.): DO (mg/L): Turbidity (NTU): ORP (mvolts:)	Instrument Mo Instrument Mo Instrument Mo Instrument Mo Instrument Mo	del: del: del:	YSI 556 YSI 556 YSI 556 Micro TPI YSI 556	Standard Solu Reading: pF Standard Solu Standard Solu Standard Solu	H 4: (1/2) ution: ution:	100% 1000/10/0.	Reading (#1)	7 100.00% 1000/10/0,2	Reading (#2) pH 10: (1/2) (#2)	10.05
INSTRUMENT MEASU	REMENTS:									
Parameters	Static*	1	2	3	4	5	6	7	8	Stabilized
Time: Depth to Water (ft) below Ref. point (drawdown <0.3)	9.67	9,70	9,70	9,70	9.70					9.70
Volume Purged (L)		3.0	5.0	5.6	6.2					6.2
Purge Rate (ml/min)		200	200	200	200		-			200
Temperature (3%) °C		9.70	9,53	9,50	9.47		1			9.47
Spec. Cond. (3%) (µS)		109	122	123	123	1				123
Salinity (3%) (ppt)		0.05	0.06	0.06	0.06	-	 			0.06
DO (10%) (mg/L)		0.69	0,45	0.46	0.47	-				0.47
pH (+/- 0,1) (s,u,)		8.87	8.71	8.74	8.75	4	-			8.75
ORP** (+/- 10) (mvolts)		-49.9	-45.9	-46.3	-48.8	+				-48.8
Turbidity (<5) (10%) (ntu) *Static measurement is	hefore installation	23.60	6,13	4.23	3.71	1	1			3.71
**If ORP is negative an				er than 10 mg/l	L; recalibrate	and/or clean	instrument. If pe	ersistent call PM.		
SAMPLING INFORMA	<u>FION</u> San	nple Depth: (below g	98 grade or re		ample Time	: 104	1	Sample ID:	MW-4BD	
Analysis	Method		No. Bottles	Bottle	Туре	Vol	Preservation		Handling	
Metals			1		stic	250 ml	HNO3		Cooler/Ice	
Hex Chrom			1	Pla	stic	250 ml			Cooler/Ice	
NOTES/OBSERVATION	<u>S:</u>									

Product Thickness: (Call PM if present) NA

Well Condition:

Good

Clear

Odor: None

Color:

GZA GeoEnvironmental, Inc. 655 Winding Brook Drive, Suite 402 Glastonbury, CT 06033

Well (D:	MW-8
Samula Data:	4/25/2019

PROJECT INFORMATION	P.	R	O.	E	C	Г	П	N	F	O	R	N	И	A	T	ľ	O	1	Į
---------------------	----	---	----	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

Color:

WATER LEVEL OBSER	VATIONS		Measurement I	Date/Time:	4/25	/2018		Collector Initials	S: -	BDR
Reference Point of Measure		Riser 🗸 Ste	el Casing							
Vell Completion:	Stand Pipe 🗹	Road Bo	-	_	Ground Elev			328,20		
Difference Between PVC as			0.39	_		Elevation (fe		0.39		
Vell Screened Interval (fbg IACH Kit Type) NA		10-20	4	(Reference Elev Other Field Met	ation - Ground El	evation)			
IACH Kii Type	IVA			=	Offici Field Met	nod				
		Depth fro	m Ref. Point	Depth Below	Ground	(Reference Poi	nt Measurement - I	Difference in Eleva	ion)	
otal Length of Well (feet):			5,50	15,		- ID 1	0 1 1/ 1			
Depth to Water (feet): standing Water in Well (fee	et):		7.15 8.35	7.5		_	Sample Volume s by 0.2642 to go		gallons or	liters 🗸
Well Condition: Protective		nod: Lock -	Ves / No: Evn	ansion Can - Ve	es/No: Well II	O - Ves / No:	Concrete Collar	- Ves / No: Well	noor / good	
Vell head vapors: VOCs (ppmv	Methane (FID		<u>1007110,</u>				ppmv
ample Method: Bail	Grah □	Pumn 🗆	Low Flow	Purge Metho	d: Bail □	Pump 🗸	Flow-Thru C	ell Vol: (460mL) 🗸 Other:	П
	ic Submersible		Peristaltic 🔽			mp 🗆		- (150112)	
NATION DATA						Т	-14:	11/0/00	Т (4:	(#2)
CALIBRATION DATA: pecific Conductance:	Instrument Mo	del·	YSI 556	Standard Solu	tion:			1/0690		
H (s.u.):	Instrument Mo		YSI 556	Reading: pF		4	pH 7: (1/2)	7	pH 10: (1/2)	10.
OO (mg/L):	Instrument Mo		YSI 556	Standard Solu		100%	Reading (#1)	100,00%	(#2)	
Furbidity (NTU): ORP (mvolts:)	Instrument Mo Instrument Mo		Micro TPI YSI 556	Standard Solu Standard Solu		237.5	Reading (#1) Reading (#1)	1000/10/0.2	(#2)	
(, 61.61)							_11000B (// 1)		()	
NSTRUMENT MEASUE Parameters	REMENTS: Static*	1	2	3	4	5	6	7	8	Stabilize
ime:					4	3	0		0	
Pepth to Water (ft)	1331	1346	1349	1352						1352
elow Ref. point										
drawdown <0.3)	7,15	7,19	7.19	7,19						7.19
Volume Purged (L)		3.0	3.0	4,2						4,2
Purge Rate (ml/min)		200	200	200						200
emperature (3%) °C		9.05	9.05	9.03						9_03
Spec. Cond. (3%) (µS)		242	242	242						242
Salinity (3%) (ppt)		0.12	0.12	0.12						0.12
OO (10%) (mg/L)		4,12	4.05	4.01						4.01
oH (+/- 0.1) (s.u.)		6,45	6,44	6,43						6.43
)RP** (+/- 10) (mvolts)		15.2	15.0	14.9						14.9
urbidity (<5) (10%) (ntu)		1,36	123	1,11						1,11
*Static measurement is b		n of equipme	nt.			1/ 1 .	16	II D) 6		1,11
**If ORP is negative and	DO is greater ti	nan 2 mg/L o	r if DO is great	er than 10 mg/1	.; recalibrate	and/or clean ii	nstrument. If pe	rsistent call PM.		
AMPLING INFORMAT	CION Sar	nple Depth: (below p	14 grade or re		ample Time:	1352		Sample ID:	MW-8	
nalysis	Method		No. Bottles	Bottle	Type	Vol	Preservation		Handling	
letals			11	Plas	• •	250 ml	HNO3		Cooler/Ice	
lex Chrom			1	Plas	stic	250 ml			Cooler/Ice	

Odor: None

GZA GeoEnvironmental, Inc. 655 Winding Brook Drive, Suite 402 Glastonbury, CT 06033

MW-8
4/25/2018

PROJECT INFORMATION		v	Vhyco Technolo	gies	Location:	Thom	aston, CT	File No.	05,0044	541,10
WATER LEVEL OBSER Reference Point of Measure Well Completion: Difference Between PVC ar Well Screened Interval (fbg: HACH Kit Type	ment: PVC I Stand Pipe ad Casing Top (f	Road Bo	Measurement I rel Casing \(\square\) \(\sq	Ground [Reference E Ground Elev Difference in	n Elevation (fo vation - Ground E	eet):	Collector Initia 327,87 328,20 0.39	BDR	
Total Length of Well (feet): Depth to Water (feet): Standing Water in Well (fee Well Condition: Protective Well head vapors: VOCs (I	t): Casing - poor / p	good; Lock	om Ref. Point 15,50 7,15 8,35 • <u>Yes / No;</u> Expa	Depth Below 15. 7. 8.: ansion Cap - Y Methane (FID	89 54 35 <u>es/No;</u> Well I	Total Purged Multiply lite	int Measurement - l Sample Volume rs by 0,2642 to g Concrete Collar ppmv	et gallons - <u>Yes / No;</u> Well	gallons or	_
Pump Type: Electric CALIBRATION DATA: Specific Conductance: pH (s.u.): DO (mg/L): Turbidity (NTU): ORP (mvolts:)	Instrument Mod Instrument Mod Instrument Mod Instrument Mod Instrument Mod Instrument Mod	del: del: del: del:	Low Flow Peristaltic YSI 556 YSI 556 YSI 556 Micro TPI YSI 556		Bladder Pu ation: H 4: (1/2) ation: ation:	Tem 1413 4 100% 1000/10/0.2	Plow-Thru C Other: pt/time (#1) 12.6 Reading (#1) pH 7: (1/2) Reading (#1) Reading (#1) Reading (#1) Reading (#1)		Temp/time (Reading (#2) pH 10: (1/2) (#2)	(#2)
INSTRUMENT MEASUR		1	2	3	4	5	6	7	8	Stabilized
Parameters Time: Depth to Water (ft) below Ref. point (drawdown <0.3) Volume Purged (L)	1331 7.15	7.19 3.0	7.19	7.19 4.2						7.19 4.2
Purge Rate (ml/min) Temperature (3%) °C Spec. Cond. (3%) (µS)		9,05 242	9.05 242	200 9.03 242						9,03 242
Salinity (3%) (ppt) DO (10%) (mg/L) pH (+/- 0.1) (s.u.)		0.12 4.12 6.45	0.12 4,05 6.44	0.12 4.01 6.43						0.12 4.01 6.43
ORP** (+/- 10) (mvolts) Turbidity (<5) (10%) (ntu) *Static measurement is b **If ORP is negative and				14.9 1.11 er than 10 mg/I	_; recalibrate	and/or clean i	nstrument. If per	rsistent call PM.		14.9
SAMPLING INFORMAT	ION San	n ple Depth: (below g	14' grade or ref.		ample Time:	1352	!	Sample ID:	MW-8	
Analysis Metals Hex Chrom	Method		No. Bottles 1	Bottle Plas Plas	stic	Vol. 250 ml 250 ml	Preservation HNO3		Handling Cooler/Ice Cooler/Ice	
NOTES/OBSERVATIONS Color: Clear	Odor:	None	Product Thickn	ess.	NA		Well Condition		Good	

GZA GeoEnvironmental, Inc. 655 Winding Brook Drive, Suite 402 Glastonbury, CT 06033

Well ID:	MW-8D
Sample Date:	4/25/2018

PROJECT INFORMATI			Whyco Technolo	gies	_ Location:	Thor	naston, CT	File No.	05,0044	4541.10
WATER LEVEL OBSER Reference Point of Measure Well Completion: Difference Between PVC at Well Screened Interval (fbg HACH Kit Type	ment: PVC F Stand Pipe ond Casing Top (for	Road Bo	Measurement I eel Casing x 0.21 90-100	Ground 🗌	Reference E Ground Elev Difference in	vation (feet) n Elevation (vation - Ground	(eet):	Collector Initial 327.94 328.15 0.21		BDR
Total Length of Well (feet): Depth to Water (feet): Standing Water in Well (fee			om Ref. Point 99,80 8.88 90,92	100	Ground 0,01 09	Total Purge	oint Measurement - d Sample Volume ers by 0,2642 to g	e 4,2	ntion) gallons or [liters 🗸
Well Condition: Protective Well head vapors: VOCs (I		good; Lock		ansion Cap - <u>Y</u> Methane (FID		D - <u>Yes / No</u>			- poor / good	ppmv
Sample Method: Bail Dectripance Electric CALIBRATION DATA: Specific Conductance: pH (s.u.): DO (mg/L):	Grab ic Submersible Instrument Mod Instrument Mod Instrument Mod	del:	Low Flow Peristaltic YSI 556 YSI 556 YSI 556	-	Bladder Pu ution: H 4: (1/2)	mp □ Ter	✓ Flow-Thru C Other: mp/time (#1) 12.0 3 Reading (#1) 4 pH 7: (1/2) 6 Reading (#1)	01/0690	Temp/time (Reading (#2) pH 10: (1/2)	(#2)
Turbidity (NTU): ORP (mvolts:)	Instrument Mod Instrument Mod		Micro TPI YSI 556	Standard Solu Standard Solu	ution:	1000/10/0.	Reading (#1) Reading (#1)		(#2)	
INSTRUMENT MEASUR	REMENTS:									
Parameters	Static*	1	2	3	4	5	6	7	8	Stabilized
Time:	1302	1317	1320	1323						1323
Depth to Water (ft)										
below Ref. point (drawdown <0.3)	8.88	8,94	8.94	8.94						8.94
Volume Purged (L)		3.0	3,0	4.2						4.2
Purge Rate (ml/min)		200	200							
Temperature (3%) °C		9.07	9.08	9.10						9.10
Spec. Cond. (3%) (µS)		241	24	242						242
Salinity (3%) (ppt)		0.12	0.12	0.12						
DO (10%) (mg/L)		4.87	4.87	4.85						0.12 4.85
pH (+/- 0,1) (s,u.)		5.93							-	
ORP** (+/- 10) (mvolts)			5,96	5.98						5.98
Turbidity (<5) (10%) (ntu)		0.01	0.01	0.01						0.01
*Static measurement is b **If ORP is negative and		of equipme	nt.		L; recalibrate	and/or clean	instrument. If per	rsistent call PM.		0.01
SAMPLING INFORMAT	<u>ION</u> San	nple Depth: (below)	95' grade or ref		ample Time:	132	3	Sample ID:	MW-8D	.(4
Analysis Metals	Method		No. Bottles	Bottle Pla		Vol. 250 ml	Preservation HNO3		Handling Cooler/Ice	
Hex Chrom			1	Pla		250 ml			Cooler/Ice	
NOTES/OBSERVATIONS	<u>S:</u>									
Color: Clear	Odor:	None	Product Thickn (Call PM if pre		NA		Well Condition		Good	

GZA GeoEnvironmental, Inc. 655 Winding Brook Drive, Suite 402 Glastonbury, CT 06033

Well ID:	MW-10M
Sample Date:	4/25/2018

Depth from Ref Point Depth Point Depth Dep	PROJECT INFORMATION			Whyco Technolo	gies	Location	Tho	omaston, CT	File No.	05,0044	1541.10
Total Lempth of Well (Reft) 7.92 8.80 29.05	Reference Point of Measure Well Completion: Difference Between PVC ar	ment: PVC F Stand Pipe Ind Casing Top (for	Road Bo	eel Casing ox ox ox ox ox ox ox ox ox ox	Ground	Reference E Ground Elec Difference i (Reference Elec	levation (feet) vation (feet) n Elevation (vation - Ground	(feet):	327.25 327.50		BDR
Sample Method: Bail	Depth to Water (feet): Standing Water in Well (fee	t):	2	28.80 7.92 20.88	29 8. 20	.05 17 .88	Total Purge Multiply lit	ed Sample Volume ters by 0.2642 to go	3,15 et gallons	gallons or [liters 🗸
Instrument Model: YSI 556 Standard Solution: 237.5 Reading (#1) 237.5 (#2)	Sample Method: Bail Depump Type: Electric CALIBRATION DATA: Specific Conductance: pH (s.u.): DO (mg/L):	Grab Grab Instrument Mod Instrument Mod Instrument Mod Instrument Mod	Pump del: del: del:	Peristaltic YSI 556 YSI 556 YSI 556	Purge Methor Standard Sohr Reading: pl Standard Solo	od: Bail [Bladder Puttion: H 4: (1/2) ution:	☐ Pump mp ☐ Te 14	Flow-Thru C Other: mp/time (#1) 12.0 13 Reading (#1) 4 pH 7: (1/2) Reading (#1)	Other ell Vol: (460ml 1/0690 7 100.00%	Temp/time (Reading (#2) pH 10: (1/2) (#2)	(#2)
Parameters	ORP (mvolts:)	Instrument Mod			•)						
Time: 1044 1059 1102 1105 11			1	2	3	4	5	6	7	8	Stabilized
Depth to Water (ft) Depth (ft) Plastic									-		
Temperature (3%) *C	below Ref. point (drawdown <0.3)		7.96	7.96	7.96						7.96
Temperature (3%) °C 13.63 13.64 13.61	Purge Rate (ml/min)		150	150	150						150
Spec. Cond. (3%) (µS) 188 18	Temperature (3%) °C										
Salinity (3%) (ppt)	Spec. Cond. (3%) (µS)										
DO (10%) (mg/L) 3.52 3.43 3.41 pH (+/- 0.1) (s.u.) 5.40 5.35 5.33 ORP** (+/- 10) (mvolts) 5.7 2.7 2.2 Turbidity (<5) (10%) (ntu) 2.97 2.34 1.86 *Static measurement is before installation of equipment. **If ORP is negative and DO is greater than 2 mg/L or if DO is greater than 10 mg/L; recalibrate and/or clean instrument. If persistent call PM. SAMPLING INFORMATION Sample Depth: (below grade or ref. pt _X) Analysis											
PH (+/- 0,1) (s.u.) ORP** (+/- 10) (mvolts) 5,7 2,7 2,2 2,2 2,2 Turbidity (<5) (10%) (ntu) 2,97 2,34 1,86 *Static measurement is before installation of equipment. **If ORP is negative and DO is greater than 2 mg/L or if DO is greater than 10 mg/L; recalibrate and/or clean instrument. If persistent call PM. SAMPLING INFORMATION Sample Depth: 26,5' Sample Time: 1105 Sample ID: MW-10M (below grade or ref. ptX) Analysis Method No. Bottles Bottle Type Vol. Preservation Handling Metals											
ORP** (+/- 10) (mvolts) 5.7 2.7 2.2 Turbidity (<5) (10%) (ntu) 2.97 2.34 1.86 *Static measurement is before installation of equipment. **If ORP is negative and DO is greater than 2 mg/L or if DO is greater than 10 mg/L; recalibrate and/or clean instrument. If persistent call PM. SAMPLING INFORMATION Sample Depth: 26.5' Sample Time: 1105 Sample ID: MW-10M (below grade or ref. pt. X_) Analysis Method No. Bottles Bottle Type Vol. Preservation Handling Metals 1 Plastic 250 ml HNO3 Cooler/Ice Hex Chrom 1 Plastic 250 ml Cooler/Ice NOTES/OBSERVATIONS:	pH (+/- 0.1) (s.u.)										
*Static measurement is before installation of equipment. **If ORP is negative and DO is greater than 2 mg/L or if DO is greater than 10 mg/L; recalibrate and/or clean instrument. If persistent call PM. *SAMPLING INFORMATION Sample Depth: 26.5' Sample Time: 1105 Sample ID: MW-10M (below grade or ref. ptX) Analysis Method No. Bottles Bottle Type Vol. Preservation Handling Metals 1 Plastic 250 ml HNO3 Cooler/Ice Hex Chrom 1 Plastic 250 ml Cooler/Ice *NOTES/OBSERVATIONS:	ORP** (+/- 10) (mvolts)										
*Static measurement is before installation of equipment. **If ORP is negative and DO is greater than 2 mg/L or if DO is greater than 10 mg/L; recalibrate and/or clean instrument. If persistent call PM. SAMPLING INFORMATION Sample Depth: 26.5' Sample Time: 1105 Sample ID: MW-10M (below grade or ref. ptX) Analysis Method No. Bottles Bottle Type Vol. Preservation Handling Metals 1 Plastic 250 ml HNO3 Cooler/Ice Hex Chrom 1 Plastic 250 ml Cooler/Ice NOTES/OBSERVATIONS:	Turbidity (<5) (10%) (ntu)										
Analysis Method No. Bottles Bottle Type Vol. Preservation Handling Metals 1 Plastic 250 ml HNO3 Cooler/Ice Hex Chrom 1 Plastic 250 ml Cooler/Ice NOTES/OBSERVATIONS:			n of equipme	nt.	51	L; recalibrate	and/or clean	instrument. If per	sistent call PM.	l#N	1.80
Metals 1 Plastic 250 ml HNO3 Cooler/Ice Hex Chrom 1 Plastic 250 ml Cooler/Ice NOTES/OBSERVATIONS:	SAMPLING INFORMAT	ION San				ample Time:	110	05	Sample ID:	MW-10M	
	Analysis Metals Hex Chrom	Method		1	Pla	stic	250 ml			Cooler/Ice	
			N	Design Till		NIA		Wall Coastie		Cood	

(Call PM if present)

GZA GeoEnvironmental, Inc. 655 Winding Brook Drive, Suite 402 Glastonbury, CT 06033

Well ID:	MW-10D
Sample Date:	4/25/2018

PROJECT INFORMATION	ON Project Name:		Whyco Technolo	ogies	Location:	Thon	naston, CT	File No.	05,0044	1541,10
WATER LEVEL OBSER Reference Point of Measure Well Completion: Difference Between PVC at Well Screened Interval (fbg HACH Kit Type	ment: PVC I Stand Pipe nd Casing Top (f	Road Bo	Measurement I eel Casing Dox Dox 0.26	Ground	Reference E Ground Elev Difference in	n Elevation (f vation - Ground I	eet):	Collector Initials 327.23 327.44 0.26	BDR	
			om Ref. Point	Depth Below		(Reference Po	int Measurement -	Difference in Elevat	tion)	
Total Length of Well (feet): Depth to Water (feet):			7.99	8.2		Total Purgeo	i Sample Volume	3.36	gallons or	liters 🗸
Standing Water in Well (fee	et):		41.41	41.	41	Multiply lite	rs by 0.2642 to g	et gallons		
Well Condition: Protective Well head vapors: VOCs (I		good; Lock	- <u>Yes / No;</u> Expa _ppmv	ansion Cap - <u>Y</u> Methane (FID		D - <u>Yes / No;</u>				ppmv
•	☐ Grab ☐ ic Submersible		Low Flow Peristaltic		od: Bail [Bladder Pu		Flow-Thru C	ell Vol: (460mL) ✓ Other:	
CALIBRATION DATA:								1/0690		(#2)
Specific Conductance: pH (s.u.):	Instrument Mo		YSI 556 YSI 556	Standard Solu Reading: ph			Reading (#1) 4 pH 7: (1/2)	7	Reading (#2)	10.05
DO (mg/L):	Instrument Mo	del:	YSI 556	Standard Solu	ition:	100%	Reading (#1)	100.00%	(#2)	10.03
Turbidity (NTU): ORP (mvolts:)	Instrument Mo		Micro TPI YSI 556	Standard Solu Standard Solu		237.	Reading (#1) Reading (#1)	1000/10/0.2 237.5	(#2)	
INSTRUMENT MEASUREMENTS:										
Parameters	Static*	1	2	3	4	5	6	7:	8	Stabilized
Time					-		V			
Depth to Water (ft)	1115	1130	1133	1136						1136
below Ref. point (drawdown <0.3)	7.96	8,01	8.01	8.01						8.01
Volume Purged (L)	7.90		6.01	8.01						0,01
Purge Rate (ml/min)		2.25	150	150						150
Temperature (3%) °C		150	150	150						150
Spec, Cond. (3%) (µS)		12.55	12,60	12.61						12,61
Salinity (3%) (ppt)		287	290	291						291
		0,14	0.14	0.14						0.14
DO (10%) (mg/L)		0.63	0.61	0.62						0.62
pH (+/- 0 ₋ 1) (s.u.)		4,79	4.79	4.81						4.81
ORP** (+/- 10) (mvolts)		3.6	3.3	3,6						3,6
Turbidity (<5) (10%) (ntu)		4.19	3,52	3.04						3.04
*Static measurement is b **If ORP is negative and				er than 10 mg/l	L; recalibrate	and/or clean	instrument. If per	rsistent call PM.		
SAMPLING INFORMAT	<u>'ION</u> San	nple Depth: (below	45' grade or ref		ample Time:	1136	5	Sample ID:	MW-10D	
Analysis Metals	Method				Type stic	Vol. 250 ml	Preservation HNO3			
Hex Chrom			1	Pla	stic	250 ml			Cooler/Ice	
NOTES/OBSERVATION	_									
Color: Clear	Odor:	None	Product Thickn (Call PM if pre		NA		Well Condition		Good	

GZA GeoEnvironmental, Inc. 655 Winding Brook Drive, Suite 402 Glastonbury, CT 06033

JUNDWATER SAMI LING DATA SHEET		
	Well ID:	MW-11M
	Sample Date:	4/25/2018
	Bampie Bate.	., .,

PR	O.	JE	C'	Г	I	VI	F()ŀ	15	VI	A	I	ľ	O	N	ſ
----	----	----	----	---	---	----	----	----	----	----	---	---	---	---	---	---

NOTES/OBSERVATIONS:

Clear

Odor: None

Color:

PROJECT INFORMATION	Project Name:	V	Vhyco Technolo	gies	Location:	Tho	maston, CT	File No.	05,004	4541.10
WATER LEVEL OBSER Reference Point of Measure Well Completion: Difference Between PVC ar Well Screened Interval (fbg) HACH Kit Type	ment: PVC R Stand Pipe and Casing Top (fe	Road Bo	_	Ground		vation (feet) n Elevation (vation - Ground	(feet):	Collector Initial 327,44 327,69 0.25	BDR	
Total Length of Well (feet): Depth to Water (feet): Standing Water in Well (feet): Well Condition: Protective Well head vapors: VOCs (Feet)	et): Casing - poor / g	3 00d; Lock -	m Ref. Point 18,65 7,96 0.69 Yes / No; Expa	38 8. 30	90 21 69 es/ No ; Well I	Total Purge Multiply lit		e 3.15 et gallons - <u>Yes / No;</u> Well	gallons or	_
Sample Method: Bail ☐ Grab ☐ Pump ☐ Low Flow ☑ Purge Method Pump Type: Electric Submersible ☐ Peristaltic ☑ CALIBRATION DATA: Specific Conductance: Instrument Model: YSI 556 Standard Solut pH (s.u.): Instrument Model: YSI 556 Reading: pH DO (mg/L): Instrument Model: YSI 556 Standard Solut Turbidity (NTU): Instrument Model: Micro TPI Standard Solut ORP (mvolts:) Instrument Model: YSI 556 Standard Solut INSTRUMENT MEASUREMENTS:					Bladder Puration: H 4: (1/2) ation: ution:	Te 14 100 1000/10/0	Other: 12.0 cmp/time (#1) 12.0 c	01/0690 	Temp/time Reading (#2) pH 10: (1/2) (#2)	(#2)
Parameters	Static*	1	2	3	1 4	5	6	7	8	Stabilized
Time:					•	3	0	,		
Depth to Water (ft) below Ref. point (drawdown <0.3) Volume Purged (L) Purge Rate (ml/min)	7.96	7.99	7,99	8,00 3.5						8,00 3.5
		150	150	150			-			150
Temperature (3%) °C Spec, Cond, (3%) (µS) Salinity (3%) (ppt)		10.93 249 0.12	10.98 249 0.12	250 0,12						250 0,12
DO (10%) (mg/L)		1,33	1.35	1,31						1.31
pH (+/- 0.1) (s.u.)		5.91	5.96	5,97						5.97
ORP** (+/- 10) (mvolts)		-13.1	-13.3	-13.7						-13.7
Turbidity (<5) (10%) (ntu)		1.36	1,21	1,18						1,18
*Static measurement is b **If ORP is negative and		of equipmen	nt.		L; recalibrate	and/or clear	instrument. If pe	rsistent call PM.		1,10
SAMPLING INFORMAT	<u>'ION</u> Sam	ple Depth: (below g	36,5' grade or ref		ample Time:	120	09	Sample ID:	MW-11D	
Analysis Metals Hex Chrom	Method		No. Bottles	Pla	Type stic stic	Vol. 250 ml 250 ml	Preservation HNO3		Handling Cooler/Ice Cooler/Ice	
Hex Chrom			1	Pla	stic	250 ml			Cooler/Ice	

Product Thickness: (Call PM if present) NA

Well Condition:

Good

GZA GeoEnvironmental, Inc. 655 Winding Brook Drive, Suite 402 Glastonbury, CT 06033

Well ID:	MW-11D
Sample Date:	4/25/2018

PROJECT INFORMATION		V	Vhyco Technolo	gies	Location	: Thor	naston, CT	File No.	05.0044	1541_10
WATER LEVEL OBSER Reference Point of Measure Well Completion: Difference Between PVC ar Well Screened Interval (fbg: HACH Kit Type	ment: PVC I Stand Pipe and Casing Top (for	Road Bo	Measurement I el Casing \(\square\) \(\squ	Ground	Reference E Ground Elec Difference i	n Elevation (i	eet):	Collector Initial 327.22 327.66 0.44	3	BDR
Total Length of Well (feet): Depth to Water (feet): Standing Water in Well (fee Well Condition: Protective	t):	6	om Ref. Point 9.90 8.12 11.78	70. 8.: 61.	34 56 78	Total Purge Multiply lite	oint Measurement - I d Sample Volume ers by 0.2642 to go	: 3.36 et gallons	gallons or [liters 🗸
Well head vapors: VOCs (I	PID/FID)	Pump 🗆	ppmv	Methane (FID	/Other)	☐ Pump [Other		ppmv .
CALIBRATION DATA: Temp/time (#1) 12,01/0690 Temp/time (#2) Specific Conductance: Instrument Model: YSI 556 Standard Solution: 1413 Reading (#1) Reading (#2) pH (s.u.): Instrument Model: YSI 556 Reading: pH 4: (1/2) 4 pH 7: (1/2) 7 pH 10: (1/2) DO (mg/L): Instrument Model: YSI 556 Standard Solution: 100% Reading (#1) 100.00% (#2) Curbidity (NTU): Instrument Model: Micro TPI Standard Solution: 1000/10/0.2 Reading (#1) 1000/10/0.2 DOPP (mvolts:) Instrument Model: YSI 556 Standard Solution: 237.5 Reading (#1) 237.5 (#2)									10.05	
INSTRUMENT MEASUR	REMENTS:									
Parameters	Static*	1	2	3	4	5	6	7	8	Stabilized
Time: Depth to Water (ft) below Ref. point (drawdown <0.3)	1218 8.12	8.17	1243 8.17	1246 8.17	1249 8 ₋ 17					1249 8.17
Volume Purged (L)		2.25	3.75	4.20	4.7					4.7
Purge Rate (ml/min)		150	150	150	150					150
Temperature (3%) °C		11.14	11.22	11.26	11,23					11,23
Spec. Cond. (3%) (µS)		282	284	284	284					284
Salinity (3%) (ppt)		0,14	0.14	0.14	0.14					0.14
DO (10%) (mg/L)		0.45	0.46	0.47	0.48					0.48
pH (+/- 0.1) (s.u.)		6,26	6.29	6,28	6.27					6.27
ORP** (+/- 10) (mvolts)		12.9	12,8	13.1	13.0		-			13.0
Turbidity (<5) (10%) (ntu) *Static measurement is b **If ORP is negative and				4.01 er than 10 mg/I	3,93	and/or clean	instrument. If per	rsistent call PM.		3,93
SAMPLING INFORMAT	ION San	n ple Depth: (below p	65' grade or ref.		imple Time:	: 124	9	Sample ID:	MW-11D	
Analysis Metals Hex Chrom	Method		No. Bottles 1	Bottle Plas Plas	stic	Vol. 250 ml 250 ml	Preservation HNO3		Handling Cooler/Ice Cooler/Ice	
NOTES/OBSERVATIONS Color: Clear	S: Odor:	None	Product Thickn	Acc.	NA		Well Condition:		Good	

(Call PM if present)

GZA GeoEnvironmental, Inc. 655 Winding Brook Drive, Suite 402 Glastonbury, CT 06033

GROUNDWATER SAMPLING DATA SHEET

Well ID:	WC-1A
Sample Date:	4/25/2018

PROJECT INFORMATION	_	v	Vhyco Technolo	gies	Location:	Thom	naston, CT	File No.	05.0044	541.10
Reference Point of Measure Well Completion:	pletion: Stand Pipe Road Box Ground Elevation (feet) 325,50 Between PVC and Casing Top (feet): 0.07 med Interval (fbg) 25-35 Ground Elevation (feet): 1.89 (Reference Elevation - Ground Elevation)									
Total Length of Well (feet): Depth to Water (feet): Standing Water in Well (feet) Well Condition: Protective	et):	3	om Ref. Point 36.65 9.05 27.6 • Yes / No; Expa	34. 8. 26	76 16 .6	Total Purged Multiply lite	int Measurement - I Sample Volumers by 0,2642 to g Concrete Collar	e 3.15 et gallons - <u>Yes / No;</u> Well	gallons or	
Well head vapors: VOCs (I Sample Method: Bail Pump Type: Electr CALIBRATION DATA:						тр 🗆	☑ Flow-Thru C	Cell Vol: (460mI	C) Other:	
Specific Conductance: pH (s.u.): DO (mg/L): Turbidity (NTU): ORP (mvolts:)	Instrument Mod Instrument Mod Instrument Mod Instrument Mod Instrument Mod	del: del: del:	YSI 556 Standard Solution: 1413 Reading (#1) Reading (#2)						Reading (#2) pH 10: (1/2) (#2)	
INSTRUMENT MEASUR	REMENTS:									
Parameters	Static*	1	2	3	4	5	6	7	8	Stabilized
Time: Depth to Water (ft) below Ref. point (drawdown <0.3) Volume Purged (L)	9.06	9.08 2.25	9.08	9,08 3.15						9,08
Purge Rate (ml/min)		150	150	150						150
Temperature (3%) °C		12.61	12.62	12,65						12.65
Spec. Cond. (3%) (µS) Salinity (3%) (ppt)		220 0.10	0.10	220 0.10						220 0.10
DO (10%) (mg/L)										
pH (+/- 0.1) (s.u.)		3.92 5.37	3.90 5.36	5.34			1			5.34
ORP** (+/- 10) (mvolts)		42.9	42.0	41.7						41.7
Turbidity (<5) (10%) (ntu)		2.32	1.29	0.96						0.96
*Static measurement is b **If ORP is negative and				er than 10 mg/I	.; recalibrate	and/or clean	nstrument. If pe	rsistent call PM.		
SAMPLING INFORMAT	<u>TON</u> San	nple Depth: (below)	30' grade or ref.	. ptX)	ample Time:	1203	3	Sample ID:	WC-1A	***
Analysis Metals	Method		No. Bottles	Bottle Pla	• •	Vol ₁ 250 ml	Preservation HNO3			
Hex Chrom			1	Pla		250 ml			Cooler/Ice	
MS/MSD										
NOTES/OBSERVATIONS	<u>S:</u>									

NA

Well Condition:

Good

Product Thickness: (Call PM if present)

Clear

Odor: None

Color:

GZA GeoEnvironmental, Inc. 655 Winding Brook Drive, Suite 402 Glastonbury, CT 06033

Well ID:	WC-2
Sample Date:	4/25/2018

PROJECT INFORMATION	<u>DN</u> Project Name:	V	Vhyco Technolo	gies	Location:	Thom	aston, CT	File No.	05.0044	541_10
WATER LEVEL OBSER' Reference Point of Measure Well Completion: Difference Between PVC ar Well Screened Interval (fbg) HACH Kit Type	ment: PVC F Stand Pipe d Casing Top (fe	Road Bo	Measurement Del Casing x 0.33	Ground	Reference E Ground Elev Difference in	n Elevation (fo vation - Ground E	Collector Initial 327.25 325,40 1,85	s: .	BDR	
Total Length of Well (feet): Depth to Water (feet): Standing Water in Well (fee Well Condition: Protective Well head vapors: VOCs (F	Casing - poor / g	1	22.05 8.94 3.11 Yes / No; Expa	Depth Below 20. 7.1 13. unsion Cap - You Methane (FID)	20 09 11 es/ No ; Well I	Total Purged Multiply lite	int Measurement - I I Sample Volume rs by 0.2642 to go Concrete Collar _ppmv	4.2 et gallons - <u>Yes / No;</u> Well	gallons or	liters 🗸
Pump Type: Electric CALIBRATION DATA: Specific Conductance: pH (s.u.): DO (mg/L): Turbidity (NTU): ORP (mvolts:)	Instrument Mod Instrument Mod Instrument Mod Instrument Mod Instrument Mod Instrument Mod	del: del: del:	Low Flow Peristaltic V YSI 556 YSI 556 YSI 556 Micro TPI YSI 556	-	Bladder Pution: 44: (1/2) tion: tion:	Tem 1413 400/10/0.2	Plow-Thru C Other: Reading (#1) PH 7: (1/2) Reading (#1) Reading (#1) Reading (#1) Reading (#1)	7	Temp/time (Reading (#2) pH 10: (1/2) (#2)	(#2)
INSTRUMENT MEASUR										
Parameters Time:	Static*	1	2	3	4	5	6	7	8	Stabilized
Depth to Water (ft) below Ref. point (drawdown <0.3) Volume Purged (L)	1218 8.96	8.99 3.0	8.99 3.6	9.00						9.00
Purge Rate (ml/min)		200	200	200						200
Temperature (3%) °C		12,90	12.92	12.95						12.95
Spec. Cond. (3%) (µS)		193	193	192						192
Salinity (3%) (ppt)		0.09	0.09	0.09						0.09
DO (10%) (mg/L)		5.26	5.23	5.22						5.22
pH (+/- 0,1) (s.u.)		5.49	5.49	5.45						5.45
ORP** (+/- 10) (mvolts)		35,4	34.1	32.6						32.6
Turbidity (<5) (10%) (ntu) *Static measurement is b **If ORP is negative and		0.01 of equipme	0.01 nt.	0.01	.: recalibrate	and/or clean i	nstrument. If per	sistent call PM.		0.01
<u>SAMPLING INFORMAT</u>	<u>ION</u> San	i ple Depth: (below g	14' grade or ref.		ımple Time:	1239	•	Sample ID:	WC-2	
Analysis Metals Hex Chrom	Method		No. Bottles 1	Bottle Plas Plas	stic	Vol. 250 ml 250 ml	Preservation HNO3		Handling Cooler/Ice Cooler/Ice	
NOTES/OBSERVATIONS Color: Clear	Odor:	None	Product Thickn	ess:	NA		Well Condition:		Good	

(Call PM if present)

GZA GeoEnvironmental, Inc. 655 Winding Brook Drive, Suite 402 Glastonbury, CT 06033

Well ID:	WC-3
Sample Date:	4/26/2018

PROJECT INFORMATIO		V	Vhyco Technolo	gies	Location:	Tho	omaston, CT	File No	05,0044	1541.10
WATER LEVEL OBSERV Reference Point of Measurer Well Completion: Difference Between PVC an Well Screened Interval (fbg) HACH Kit Type	nent: PVC R Stand Pipe d Casing Top (fe	Road Bo	Measurement II el Casing x 0.36 7-22	Ground	A/25 Reference Elev Difference ir (Reference Elev Other Field Met	ration (feet) 1 Elevation 1 ation - Ground	(feet):	Collector Initial 326,05 324,70 1.35	S:	BDR
Total Length of Well (feet): Depth to Water (feet): Standing Water in Well (feet) Well Condition: Protective Well head vapors: VOCs (P	Casing - poor / g	1		25 7. 17	.05 79 .26 <u>es/No;</u> Well II	Total Purg Multiply li		e 3,15 et gallons - <u>Yes / No;</u> Well	gallons or	
Sample Method: Bail Pump Type: Electri		Pump 🗌				Pump	✓ Flow-Thru C		C) 🗸 Other:	
CALIBRATION DATA: Specific Conductance: pH (s.u.): DO (mg/L): Turbidity (NTU): ORP (mvolts:)	Instrument Mod Instrument Mod Instrument Mod Instrument Mod Instrument Mod	lel: lel: lel:	YSI 556 YSI 556 YSI 556 Micro TPI YSI 556	Standard Solu Reading: pl Standard Solu Standard Solu Standard Solu	H 4: (1/2) ution: ution:	1000/10/0	emp/time (#1) 12,4 13 Reading (#1) 4 pH 7: (1/2) 16 Reading (#1) 17.5 Reading (#1) 18 Reading (#1)	7 100,00%	(#2)	. ,
INSTRUMENT MEASUR	EMENTS:									
Parameters Time:	Static*	949	952	3 955	4	5	6	7	8	Stabilized 955
Depth to Water (ft) below Ref. point (drawdown <0.3) Volume Purged (L)	9.16	9,18	9,18 2.7	9,18						9.18
Purge Rate (ml/min)		150	150	150						150
Γemperature (3%) °C		7.71	7.68	7,65						7,65
Spec. Cond. (3%) (µS)		178	180	180						180
Salinity (3%) (ppt)		0.08	0.06	0.06						0.06
OO (10%) (mg/L) OH (+/- 0-1) (s-u-)		4,99	5,02	5,06						5,06
ORP** (+/- 10) (mvolts)		6.06 77.4	6.09 73.4	6.11						6.11
Turbidity (<5) (10%) (ntu)		0,36	0.21	0.14						71.0 0.14
*Static measurement is be **If ORP is negative and		of equipme	nt		L; recalibrate	and/or clear	n instrument. If pe	rsistent call PM.		0111
SAMPLING INFORMAT	ION Sam	ple Depth:	17' grade or ref	. pt,_X)	ample Time:	9	55	Sample ID:	WC-3	
Analysis Metals	Method		No Bottles		e Type stic	Vol. 250 ml	Preservation HNO3		Handling Cooler/Ice	
Hex Chrom			1	Pla	stic	250 ml			Cooler/Ice	
NOTES/OBSERVATIONS	<u> </u>		Product Thickn			5				

(Call PM if present)

GZA GeoEnvironmental, Inc. 655 Winding Brook Drive, Suite 402 Glastonbury, CT 06033

GROUNDWATER SAMPLING DATA SHEET

Well ID:	WC-4
Comple Date:	1/26/2019

OT	0	TE	CT	TNI	FOR	B/E	A TEL		M
- N	u	J E	\ I	III.	run	JVII	\ I I	w	м

PROJECT INFORMATION	Project Name:		Vhyco Technolo	gies	Location	Tho	maston, CT	File No.	05.0044	1541.10
WATER LEVEL OBSER Reference Point of Measure Well Completion: Difference Between PVC ar Well Screened Interval (fbg) HACH Kit Type	ment: PVC I Stand Pipe d Casing Top (f	Road Bo	Measurement I el Casing	Ground 🗌	Reference E Ground Elev Difference in	vation (feet) n Elevation (vation - Ground	feet):	Collector Initial 327.34 325.10 2.24		BDR
			om Ref. Point	Depth Below	Ground	(Reference P	oint Measurement - l	Difference in Eleva	ntion)	
Total Length of Well (feet): Depth to Water (feet):			9.90	19 7.0		Total Durge	ed Sample Volume	. 12	gallons or	liters 🗸
Standing Water in Well (fee	t):		2,00		.00		ers by 0.2642 to go		ganons or	nicis 🔻
Well Condition: Protective Well head vapors: VOCs (F		good; Lock -	Yes / No; Expa ppmv	nsion Cap - <u>Yo</u> Methane (FID		- poor / good	ppmv			
•] Grab □ ic Submersible		Low Flow Peristaltic		od: Bail [Bladder Pu		✓ Flow-Thru C	ell Vol: (460mI		
CALIBRATION DATA: Specific Conductance: pH (s.u.): DO (mg/L): Furbidity (NTU): ORP (mvolts:)	Instrument Mo Instrument Mo Instrument Mo Instrument Mo Instrument Mo	del: del: del:	YSI 556 YSI 556 YSI 556 Micro TPI YSI 556	Standard Solu Reading: pF Standard Solu Standard Solu Standard Solu	H 4: (1/2) ation: ation:	1000/10/0	mp/time (#1) 12.0 3 Reading (#1) 4 pH 7: (1/2) 6 Reading (#1) 2 Reading (#1) 5 Reading (#1)	7 100.00% 1000/10/0.2	Reading (#2) pH 10: (1/2) (#2)	
NSTRUMENT MEASUR										
Parameters	Statie*	1	2	3	4	5	6	7	8	Stabilizes
Cime: Depth to Water (ft) Delow Ref. point drawdown <0,3)	9.91	1102 9.94	9.94	1108						9.94
Volume Purged (L)	2,21									
Purge Rate (ml/min)		200	3.6	200						200
emperature (3%) °C		8.68	8.64	8.62						8.62
pec. Cond. (3%) (µS)		226	225	225						225
alinity (3%) (ppt)		0.11	0.11	0.11						0.11
OO (10%) (mg/L)		1.32	1.0	1.29						1.29
H (+/- 0.1) (s.u.)		6.57	6.59	6.61						6,61
PRP** (+/- 10) (mvolts)		7.1	6.7	5,4						5.4
'urbidity (<5) (10%) (ntu)		0.01	0.01	0.01						0.01
*Static measurement is b **If ORP is negative and		n of equipmen	nt.		; recalibrate	and/or clean	instrument. If per	sistent call PM.		0.01
AMPLING INFORMAT	ION San	nple Depth: (below g	17 grade or ref.		ample Time:	110	98	Sample ID:	WC-4	
nalysis	Method		No. Bottles	Bottle	Туре	Vol	Preservation		Handling	
Metals Mex Chrom			1	Plas Plas	0.9	250 ml	HNO3		Cooler/Ice Cooler/Ice	
NOTES/OBSERVATIONS	S:									
Color: Clear	Odor:	None	Product Thickn	ess:	NA		Well Condition:		Good	

APPENDIX C LABORATORY ANALYTICAL REPORTS

Friday, April 27, 2018

Attn: Chris Frey GZA GeoEnvironmental, Inc. 655 Winding Brook Drive Suite 402 Glastonbury, CT 06033

Project ID: WHYCO

Sample ID#s: CA36000 - CA36006

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301

CT Lab Registration #PH-0618

MA Lab Registration #M-CT007

ME Lab Registration #CT-007

NH Lab Registration #213693-A,B

NJ Lab Registration #CT-003

NY Lab Registration #11301

PA Lab Registration #68-03530

RI Lab Registration #63

UT Lab Registration #CT00007

VT Lab Registration #VT11301

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

April 27, 2018

FOR: Attn: Chris Frey

GZA GeoEnvironmental, Inc. 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample InformationCustody InformationDateTimeMatrix:GROUND WATERCollected by:04/25/1810:36Location Code:GZACTENGReceived by:SW04/25/1815:55

Rush Request: Standard Analyzed by: see "By" below

P.O.#: 44547 Laboratory Data

SDG ID: GCA36000

Phoenix ID: CA36000

Project ID: WHYCO Client ID: MW-2

RL/ Parameter Result PQL Units Dilution Date/Time By Reference 0.09 0.01 mg/L 1 04/25/18 17:54 0 SM3500CRB-11 Chromium, Hexavalent

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

If there are any questions regarding this data, please call Phoenix Client Services. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

April 27, 2018

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

April 27, 2018

FOR: Attn: Chris Frey

GZA GeoEnvironmental, Inc.

655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample Information **Custody Information** Date Time Matrix: **GROUND WATER** Collected by: 04/25/18 11:05 Received by: **GZACTENG** 04/25/18 Location Code: SW 15:55 Standard Analyzed by: Rush Request: see "By" below

Laboratory Data

SDG ID: GCA36000

Phoenix ID: CA36001

Project ID: WHYCO Client ID: MW-10M

44547

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Chromium, Hexavalent	0.35	0.01	mg/L	1	04/25/18 17:58	0	SM3500CRB-11

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

P.O.#:

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

April 27, 2018

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Fax (860) 645-0823 Tel. (860) 645-1102

Analysis Report

April 27, 2018

FOR: Attn: Chris Frey

> GZA GeoEnvironmental, Inc. 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample Information **Custody Information** <u>Time</u> Date Matrix: **GROUND WATER** Collected by: 04/25/18 11:36 Received by: SW 04/25/18 15:55 Location Code: **GZACTENG** Standard Rush Request:

Analyzed by: see "By" below

Laboratory Data

Phoenix ID: CA36002

SDG ID: GCA36000

Project ID: **WHYCO** Client ID: **MW-10D**

44547

RL/ Parameter Result **PQL** Units Dilution Date/Time By Reference 1 SM3500CRB-11 < 0.01 0.01 mg/L 0 Chromium, Hexavalent 04/25/18 17:59

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

P.O.#:

If there are any questions regarding this data, please call Phoenix Client Services. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

April 27, 2018

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

April 27, 2018

FOR: Attn: Chris Frey

GZA GeoEnvironmental, Inc. 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample Informa	ation .	Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	GROUND WATER	Collected by:		04/25/18	12:09
Location Code:	GZACTENG	Received by:	SW	04/25/18	15:55
Rush Request:	Standard	Analyzed by:	see "By" below		

Laboratory Data

SDG ID: GCA36000

Phoenix ID: CA36003

Project ID: WHYCO Client ID: MW-11M

44547

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Chromium, Hexavalent	0.05	0.01	mg/L	1	04/25/18 18:00	0	SM3500CRB-11

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

P.O.#:

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

April 27, 2018

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Fax (860) 645-0823 Tel. (860) 645-1102

Analysis Report

April 27, 2018

FOR: Attn: Chris Frey

> GZA GeoEnvironmental, Inc. 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample Information **Custody Information** Time <u>Date</u> 12:49 Matrix: **GROUND WATER** Collected by: 04/25/18 Received by: SW 04/25/18 15:55 Location Code: **GZACTENG** Rush Request:

Analyzed by: Standard see "By" below

> SDG ID: GCA36000 **Laboratory Data**

Phoenix ID: CA36004

Project ID: WHYCO Client ID: MW-11D

44547

RL/ Parameter Result **PQL** Units Dilution Date/Time By Reference < 0.01 0.01 mg/L 1 0 SM3500CRB-11 Chromium, Hexavalent 04/25/18 18:00

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

P.O.#:

If there are any questions regarding this data, please call Phoenix Client Services. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

April 27, 2018

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

April 27, 2018

44547

FOR: Attn: Chris Frey

> GZA GeoEnvironmental, Inc. 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample Information **Custody Information** Date Time 04/25/18 13:23 Matrix: **GROUND WATER** Collected by: Received by: Location Code: **GZACTENG** SW 04/25/18 15:55 Rush Request:

Standard Analyzed by: see "By" below

> SDG ID: GCA36000 **Laboratory Data**

Phoenix ID: CA36005

WHYCO Project ID: Client ID: MW-8D

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Chromium, Hexavalent	0.04	0.01	mg/L	1	04/25/18 18:01	0	SM3500CRB-11

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

P.O.#:

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

April 27, 2018

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Fax (860) 645-0823 Tel. (860) 645-1102

Analysis Report

April 27, 2018

FOR: Attn: Chris Frey

> GZA GeoEnvironmental, Inc. 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample Information **Custody Information** <u>Time</u> <u>Date</u> Matrix: **GROUND WATER** Collected by: 04/25/18 13:52 **GZACTENG** Received by: 04/25/18 Location Code: SW 15:55 Rush Request:

Analyzed by: Standard see "By" below

> SDG ID: GCA36000 **Laboratory Data**

Phoenix ID: CA36006

WHYCO Project ID: MW-8 Client ID:

44547

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Chromium, Hexavalent	0.02	0.01	mg/L	1	04/25/18 18:01	0	SM3500CRB-11

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

P.O.#:

If there are any questions regarding this data, please call Phoenix Client Services. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

April 27, 2018

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

April 27, 2018

QA/QC Data

SDG I.D.: GCA36000

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 428061 (mg/L), Q0	Samp	le No:	CA35755	(CA360	00, CA	36001,	CA3600	2, CA3	6003,	CA36004	I, CA3	6005, C	A36006)
Chromium, Hexavalent	BRL	0.01	<0.01	<0.01	NC	99.5			106			90 - 110	20
Comment:													
Additional Hexavalent Chromium c	riteria: Lo	CS acce	eptance ran	ge for wa	iters is 9	90-110%	and MS	accepta	nce ran	ige is 85-1	15%.		

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis Shiller, Laboratory Director

April 27, 2018

Sample Criteria Exceedances Report

GCA36000 - GZACTENG

Criteria: CT: GWP, SWP

Friday, April 27, 2018

State: CI	5							Analysis
SampNo Acode	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
CA36001	HEXCRWM	Chromium, Hexavalent	CT / RSR SWPC (ug/l) / Inorganics	0.35	0.01	0.11	0.11	mg/L

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

REASONABLE CONFIDENCE PROTOCOL LABORATORY ANALYSIS QA/QC CERTIFICATION FORM

Laboratory Name: Phoenix Environmental Labs, Inc. Client: GZA GeoEnvironmental, Inc.

Project Location: WHYCO Project Number:

Laboratory Sample ID(s): CA36000-CA36006 Sampling Date(s): 4/25/2018

List RCP Methods Used (e.g., 8260, 8270, et cetera) None

1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CT DEP method-specific Reasonable Confidence Protocol documents?	✓ Yes □ No
1A	Were the method specified preservation and holding time requirements met?	✓ Yes □ No
1B	<u>VPH and EPH methods only:</u> Was the VPH or EPH method conducted without significant modifications (see section 11.3 of respective RCP methods)	☐ Yes ☐ No ☑ NA
2	Were all samples received by the laboratory in a condition consistent with that described on the associated Chain-of-Custody document(s)?	✓ Yes □ No
3	Were samples received at an appropriate temperature (< 6 Degrees C)?	☐ Yes ☐ No ✓ NA
4	Were all QA/QC performance criteria specified in the CTDEP Reasonable Confidence Protocol documents achieved?	✓ Yes □ No
5	a) Were reporting limits specified or referenced on the chain-of-custody?	✓ Yes □ No
	b) Were these reporting limits met?	✓ Yes □ No
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	☐ Yes 🗹 No
7	Are project-specific matrix spikes and laboratory duplicates included in the data set?	☐ Yes ☑ No

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or 1B is "No", the data package does not meet the requirements for "Reasonable Confidence". This form may not be altered and all questions must be answered.

I, the undersigned, attest under the pains and penaltic knowledge and belief and based upon my personal ind information contained in this analytical report, such i	quiry of those responsible for providing the								
Authorized Signature: Roshui Wakot Position: Project Manager									
Printed Name: Rashmi Makol	Date: Friday, April 27, 2018								
Name of Laboratory Phoenix Environmental Labs, Inc.									

This certification form is to be used for RCP methods only.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

April 27, 2018 SDG I.D.: GCA36000

SDG Comments

No RCP analyses are included with this report. The RCP narrative is provided at the request of the client.

Hexavalent Chromium (Aqueous)

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

BECKMAN DU720 04/25/18-1 Dustin Harrison, Chemist 04/25/18

CA36000, CA36001, CA36002, CA36003, CA36004, CA36005, CA36006

The initial calibration met all criteria including a standard run at the reporting level.

All calibration verification standards (ICV, CCV) met criteria.

All calibration blank verification standards (ICB, CCB) met criteria.

QC (Batch Specific):

Batch 428061 (CA35755)

CA36000, CA36001, CA36002, CA36003, CA36004, CA36005, CA36006

All LCS recoveries were within 90 - 110 with the following exceptions: None.

Additional Hexavalent Chromium criteria: LCS acceptance range for waters is 90-110% and MS acceptance range is 85-115%.

Temperature Narration

The samples were received at 2.4C with cooling initiated.

(Note acceptance criteria for relevant matrices is above freezing up to 6°C)

Coolant: IPK TO ICE No Temporary ICE Pg of Data Delivery/Contact Options:	This section MUST be completed with Bottle Quantities.	101 105 14 15 14 15 14 15 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$			Data Format Excel GIS/Key GIS/Key	Other Data Package Tier II Checklist Full Data Package* Full Data Package* Other SURCHARGE APPLIES
Cooler: Coolant: IPK F Temp Jo Data Delivery/Cont Pax: Phone: Email:	Project P.O: This Could be considered by the Book Book Book Book Book Book Book Boo	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	OTALO OF			tt	ility S-1 ial DEC S-2 In MwRa eSMART Other
Y RECORD 0, Manchester, CT 06040 Fax (860) 645-0823 645-8726	Fay Ben 1		\$ 100 mm			Exposure ential)	Corner GB Mobility GB Mobility GB Mobility GB Mobility GB GB Mobility GB
CHAIN OF CUSTODY RECORD East Middle Turnpike, P.O. Box 370, Manchester, CT 06040 Email: info@phoenixlabs.com Fax (860) 645-0823 Client Services (860) 645-8726	Project: Christinoice to: Christinoice	Analysis Request	E	(××	× × ×	USSII & Time:	Turnaround: 1 Day* 2 Days* 3 Days* Other surcharge Applies
CH 587 East Mid Email: in		ntion Date: レンラング Date: レンシング Sr WW=Waste Water	Date Sampled	1136	1767 7 7 6251 7	IMM	
PHOENIX Environmental Laboratories, Inc.	17 Emguntsops	Sampler's Signature Batti Sample Information - Identification Signature Batti Code: DW-Drinking Water GW=Ground Water SW=Surface Water WW=Waste Water RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Soild W=Wipe OIL=Oil B=Bulk L=Liquid		mw - 100 mw - 11m	mw-80 mw-80	Accepted by:	Comments, Special Requirements or Regulations:
PHO Environment	Customer: Address:	Sampler's Signature Matrix Code: DW=Drinking Water G'RW=Raw Water SE=Se	SE ONLY	-~~~	36005 36005 36006	Relinquished by:	Comments, Special Re

Monday, April 30, 2018

Attn: Mr. Chris Frey GZA GeoEnvironmental, Inc. 655 Winding Brook Drive Suite 402 Glastonbury, CT 06033

Project ID: WHYCO

Sample ID#s: CA36907 - CA36914

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301

CT Lab Registration #PH-0618

MA Lab Registration #M-CT007

ME Lab Registration #CT-007

NH Lab Registration #213693-A,B

NJ Lab Registration #CT-003

NY Lab Registration #11301

PA Lab Registration #68-03530

RI Lab Registration #63

UT Lab Registration #CT00007

VT Lab Registration #VT11301

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Fax (860) 645-0823 Tel. (860) 645-1102

Analysis Report

April 30, 2018

FOR: Attn: Mr. Chris Frey

> GZA GeoEnvironmental, Inc. 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample Information Time Custody Information <u>Date</u> BR 04/26/18 8:59 Matrix: **GROUND WATER** Collected by: **GZACTENG** Received by: 04/26/18 Location Code: LB 15:44 Rush Request: Standard Analyzed by:

see "By" below

Laboratory Data

SDG ID: GCA36907

Phoenix ID: CA36907

WHYCO Project ID: Client ID: MW-3

44541

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Chromium, Hexavalent	0.09	0.01	mg/L	1	04/26/18 17:55	0	SM3500CRB-11

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

P.O.#:

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

April 30, 2018

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Custody Information

Analysis Report

April 30, 2018

FOR: Attn: Mr. Chris Frey

> GZA GeoEnvironmental, Inc. 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample Information

GROUND WATER

Collected by:

Date 04/26/18 Time 9:26

Location Code:

Matrix:

P.O.#:

GZACTENG

Received by:

BR LB

04/26/18

15:44

Rush Request:

Standard

44541

Analyzed by:

see "By" below

SDG ID: GCA36907

aboratory Data

Phoenix ID: CA36908

Βv

0

Reference SM3500CRB-11

Project ID: Client ID:

WHYCO

MW-3BD

RL/

Parameter **PQL** Dilution Result Units Date/Time < 0.01 0.01 1 Chromium, Hexavalent mg/L 04/26/18 17:55

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

April 30, 2018

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

April 30, 2018

FOR: Attn: Mr. Chris Frey

GZA GeoEnvironmental, Inc. 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample Informa	<u>ation</u>	Custody Inforn	<u>nation</u>	<u>Date</u> <u>T</u>			
Matrix:	GROUND WATER	Collected by:	BR	04/26/18	9:55		
Location Code:	GZACTENG	Received by:	LB	04/26/18	15:44		
Rush Request:	Standard	Analyzed by:	see "Rv" helow				

Laboratory Data

SDG ID: GCA36907

Phoenix ID: CA36909

Project ID: WHYCO Client ID: WC-3

44541

RL/ Parameter **PQL** Units Dilution Result Date/Time Вγ Reference 0.04 0.01 mg/L 1 04/26/18 17:57 SM3500CRB-11 Chromium, Hexavalent

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

P.O.#:

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

April 30, 2018

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

April 30, 2018

FOR: Attn: Mr. Chris Frey

> GZA GeoEnvironmental, Inc. 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample Information **Custody Information** Time Date BR 04/26/18 10:41 Matrix: **GROUND WATER** Collected by: Received by: Location Code: **GZACTENG** LB 04/26/18 15:44 Rush Request: Standard

Analyzed by: see "By" below

> **SDG ID: GCA36907** aboratory Data

Phoenix ID: CA36910

WHYCO Project ID: Client ID: MW-4BD

44541

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Chromium, Hexavalent	< 0.01	0.01	mg/L	1	04/26/18 17:57	0	SM3500CRB-11

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

P.O.#:

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

April 30, 2018

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

April 30, 2018

FOR: Attn: Mr. Chris Frey

GZA GeoEnvironmental, Inc.

655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample Informa	<u>ation</u>	Custody Inforn	<u>nation</u>	<u>Date</u> <u>Time</u>					
Matrix:	GROUND WATER	Collected by:	BR	04/26/18	11:08				
Location Code:	GZACTENG	Received by:	LB	04/26/18	15:44				
Rush Request:	Standard	Analyzed by:	see "By" below						

Analyzed by: see "By" below

> SDG ID: GCA36907 .aboratory

Phoenix ID: CA36911

Project ID: **WHYCO** Client ID: WC-4

44541

RL/ Parameter Result **PQL** Units Dilution Date/Time Βy Reference 0.04 0.01 SM3500CRB-11 Chromium, Hexavalent mg/L 04/26/18 17:58 0

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

P.O.#:

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

April 30, 2018

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

April 30, 2018

FOR: Attn: Mr. Chris Frey

> GZA GeoEnvironmental, Inc. 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample Information

GROUND WATER

Location Code:

Matrix:

GZACTENG

Rush Request:

Standard

P.O.#:

44541

Custody Information

Collected by:

Analyzed by:

Received by:

LB

BR

see "By" below

_aboratory Data

SDG ID: GCA36907

<u>Time</u>

11:36

15:44

Phoenix ID: CA36912

Date

04/26/18

04/26/18

Project ID:

WHYCO

Client ID:

MW-1BD

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Chromium, Hexavalent	< 0.01	0.01	mg/L	1	04/26/18 17:59	0	SM3500CRB-11

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

April 30, 2018

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

April 30, 2018

44541

FOR: Attn: Mr. Chris Frey

GZA GeoEnvironmental, Inc. 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample Information **Custody Information** <u>Time</u> <u>Date</u> Matrix: **GROUND WATER** Collected by: BR 04/26/18 12:03 **GZACTENG** Received by: Location Code: LB 04/26/18 15:44 Analyzed by: see "By" below Rush Request: Standard

Laboratory Data

SDG ID: GCA36907

Phoenix ID: CA36913

Project ID: WHYCO Client ID: WC-1A

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Chromium, Hexavalent Client MS/MSD	1.37 Completed	0.01	mg/L	1	04/26/18 17:51 04/26/18	0	SM3500CRB-11

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

P.O.#:

If there are any questions regarding this data, please call Phoenix Client Services. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

April 30, 2018

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Fax (860) 645-0823 Tel. (860) 645-1102

Analysis Report

April 30, 2018

FOR: Attn: Mr. Chris Frey

> GZA GeoEnvironmental, Inc. 655 Winding Brook Drive

Suite 402

Glastonbury, CT 06033

Sample Information **Custody Information** Time Date 04/26/18 12:39 Matrix: **GROUND WATER** Collected by: BR Received by: Location Code: **GZACTENG** LB 04/26/18 15:44 Rush Request: Standard

Analyzed by: see "By" below

SDG ID: GCA36907 _aboratory Data

Phoenix ID: CA36914

Project ID: WHYCO Client ID: WC-2

44541

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Chromium, Hexavalent	0.55	0.01	mg/L	1	04/26/18 17:59	0	SM3500CRB-11

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

P.O.#:

If there are any questions regarding this data, please call Phoenix Client Services.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

April 30, 2018

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

April 30, 2018

QA/QC Data

SDG I.D.: GCA36907

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 428258 (mg/L), QC Sample No: CA36913 (CA36907, CA36908, CA36909, CA36910, CA36911, CA36912, CA36913, CA36914)													
Chromium, Hexavalent Comment:	BRL	0.01	1.37	1.36	0.70	100			95.0			90 - 110	20
Additional Hexavalent Chromium of	riteria: L	CS acce	ptance ran	ge for wa	iters is 9	0-110%	and MS	acceptar	nce ran	ge is 85-1	115%.		

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

April 30, 2018

Sample Criteria Exceedances Report

GCA36907 - GZACTENG

Phoenix Analyte

Criteria

Result

Analysis Units

RL Criteria

Criteria

묍

SampNo Acode
*** No Data to Display ***

Monday, April 30, 2018 Criteria: None State: CT Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

REASONABLE CONFIDENCE PROTOCOL LABORATORY ANALYSIS QA/QC CERTIFICATION FORM

Laboratory Name: Phoenix Environmental Labs, Inc. Client: GZA GeoEnvironmental, Inc.

Project Location: WHYCO Project Number:

Laboratory Sample ID(s): CA36907-CA36914 Sampling Date(s): 4/26/2018

List RCP Methods Used (e.g., 8260, 8270, et cetera) None

1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CT DEP method-specific Reasonable Confidence Protocol documents?	✓ Yes □ No
1A	Were the method specified preservation and holding time requirements met?	✓ Yes □ No
1B	<u>VPH and EPH methods only:</u> Was the VPH or EPH method conducted without significant modifications (see section 11.3 of respective RCP methods)	☐ Yes ☐ No ✓ NA
2	Were all samples received by the laboratory in a condition consistent with that described on the associated Chain-of-Custody document(s)?	✓ Yes □ No
3	Were samples received at an appropriate temperature (< 6 Degrees C)?	✓ Yes □ No □ NA
4	Were all QA/QC performance criteria specified in the CTDEP Reasonable Confidence Protocol documents achieved?	✓ Yes □ No
5	a) Were reporting limits specified or referenced on the chain-of-custody?	☐ Yes ☑ No
	b) Were these reporting limits met?	✓ Yes □ No
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	☐ Yes 🗹 No
7	Are project-specific matrix spikes and laboratory duplicates included in the data set?	✓ Yes □ No

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or 1B is "No", the data package does not meet the requirements for "Reasonable Confidence". This form may not be altered and all questions must be answered.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.											
Authorized Signature: Roshui Wakol P	osition: Project Manager										
Printed Name: Rashmi Makol	Date: Monday, April 30, 2018										
Name of Laboratory Phoenix Environmental Labs, Inc.											

This certification form is to be used for RCP methods only.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

April 30, 2018 SDG I.D.: GCA36907

SDG Comments

No RCP analyses are included with this report. The RCP narrative is provided at the request of the client.

Hexavalent Chromium (Aqueous)

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

BECKMAN DU720 04/26/18-1 Dustin Harrison, Chemist 04/26/18

CA36907, CA36908, CA36909, CA36910, CA36911, CA36912, CA36913, CA36914

The initial calibration met all criteria including a standard run at the reporting level.

All calibration verification standards (ICV, CCV) met criteria.

All calibration blank verification standards (ICB, CCB) met criteria.

QC (Site Specific):

Batch 428258 (CA36913)

CA36907, CA36908, CA36909, CA36910, CA36911, CA36912, CA36913, CA36914

All LCS recoveries were within 90 - 110 with the following exceptions: None.

All MS recoveries were within 85 - 115 with the following exceptions: None.

Additional Hexavalent Chromium criteria: LCS acceptance range for waters is 90-110% and MS acceptance range is 85-115%.

Temperature Narration

The samples were received at 1.0C with cooling initiated. (Note acceptance criteria for relevant matrices is above freezing up to 6°C)

Coolant: IPK ICE No Temp Of Pg of P	Data Delivery/Contact Option	Project P.O. 4454)	This section MUST be completed with Bottle Quantities.			10 8 10 10 10 10 10 10 10 10 10 10 10 10 10					, .	-~	>		MCP Certification GW-1 GW-1		<u> </u>	RA eSMART	B
RECORD	D, Manchester, CT 06040		Chris Prey Ben auch Chris Pry			1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /								ŀ	t Exposure RARCP Cert Centidential) GW Protection	SW Protection	GB Mobility GB Acidantial DEC	I/C DEC	State where samples were collected:
CHAIN OF CUSTODY RECORD	587 East Middle Tumpike, P.O. Box 370, Manchester, CT 06040 Email: info@phoenixlabs,com Fax (860) 645-0823 Client Services (860) 645-8726	Project:	Report to: Ch	Analysi		Att.	×	× ×	× × ×	× '	× × ×	3/2	7		TOR WELL		Turnaround:	2 Days*	Standard Other SURCHARGE APPLIES
	Inc.	Glastonbury LT		Hormation - Identification Date: 4-36-16	inface Water WW =Waste Water oil SD=Solid W=Wipe OIL=Oil	Sample Date Time Matrix Sampled	RW 11-36-18 1859	X6	88	7.59	1108	97 OH	1 1 133				is:		
	PHOENIX Environmental Laboratories,	624 Gla		Client Sample Leformation	Matrix Code: DW=Drinking Water GW=Ground Water SW=Surface Water WW=Waste ' RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Soild W=Wipe (B=Bulk L=Liquid	Customer Sample Identification	ارغا	MW-380		5	1 -	MW-1 部) いて-(A	ان		Accepted by:		Comments, Special Requirements or Regulations		
))	PHC Environme	Customer:	Address:	Sampler's Signature	Matrix Code: DW-Drinking Water RW-Raw Water SE B-Bulk L-Liquid	PHOENIX USE ONLY SAMPLE #	30907	30908	36909	36410	17000	20017	31816		Relinquished by		Comments, Special		

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Christopher J. Frey GZA GeoEnvironmental, Inc. 655 Winding Brook Drive Suite 402 Glastonbury, CT 06033

RE: Whyco (05.0044541)

ESS Laboratory Work Order Number: 1804773

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director

REVIEWED

By ESS Laboratory at 2:41 pm, May 03, 2018

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

lient Name: GZA GeoEnvironmental, Inc.

lient Project ID: Whyco

ESS Laboratory Work Order: 1804773

SAMPLE RECEIPT

he following samples were received on April 26, 2018 for the analyses specified on the enclosed Chain of Custody Record.

o achieve Reasonable Confidence Protocols (RCP) compliance for Connecticut data, ESS Laboratory has reviewed all A/QC Requirements and Performance Standards listed in each method. Holding times and preservation have also been eviewed. All RCP requirements have been performed and achieved unless noted in the project narrative.

juestion 5: Each method has been set-up in the laboratory to reach required RCP standards. The methods for aqueous OA and Soil Methanol VOA have known limitations for certain analytes (ie for GWPC samples, 1,2-Dibromoethane egulatory levels will not be met by VOA 8260. If this is a contaminant of concern Method 8011 will need to be used.). he regulatory standards may not be achieved due to these limitations. In addition, for all methods, matrix iterferences, dilutions, and %Solids may elevate method reporting limits above regulatory standards. **ESS** aboratory can provide, upon request, a Data Checker (regulatory standard comparison spreadsheet) electronic eliverable which will highlight these exceedances.

juestion 6: All samples for Metals were analyzed for a subset of the required RCP list per the client's request.

ab Number	Sample Name	Matrix	Analysis
804773-01	MW-2	Ground Water	6010C
804773-02	MW-10M	Ground Water	6010C
804773-03	MW-10D	Ground Water	6010C
804773-04	MW-11M	Ground Water	6010C
804773-05	MW-11D	Ground Water	6010C
804773-06	MW-8D	Ground Water	6010C
804773-07	MW-8	Ground Water	6010C

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

lient Name: GZA GeoEnvironmental, Inc.

lient Project ID: Whyco

ESS Laboratory Work Order: 1804773

PROJECT NARRATIVE

o unusual observations noted.

nd of Project Narrative.

DATA USABILITY LINKS

o ensure you are viewing the most current version of the documents below, please clear your internet cookies for ww.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

refinitions of Quality Control Parameters

emivolatile Organics Internal Standard Information

emivolatile Organics Surrogate Information

olatile Organics Internal Standard Information

olatile Organics Surrogate Information

PH and VPH Alkane Lists

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

lient Name: GZA GeoEnvironmental, Inc.

lient Project ID: Whyco

ESS Laboratory Work Order: 1804773

CURRENT SW-846 METHODOLOGY VERSIONS

nalytical Methods

010A - Flashpoint

010C - ICP

020A - ICP MS

010 - Graphite Furnace

196A - Hexavalent Chromium

470A - Aqueous Mercury

471B - Solid Mercury

011 - EDB/DBCP/TCP

015C - GRO/DRO

081B - Pesticides

082A - PCB

100M - TPH

151A - Herbicides

260B - VOA

270D - SVOA

270D SIM - SVOA Low Level

014 - Cyanide

038 - Sulfate

040C - Aqueous pH

045D - Solid pH (Corrosivity)

050A - Specific Conductance

056A - Anions (IC)

060A - TOC

095B - Paint Filter

1ADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

W846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These iethods are reported per client request and are not NELAP accredited.

Dependability

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

lient Name: GZA GeoEnvironmental, Inc.

lient Project ID: Whyco

ESS Laboratory Work Order: 1804773

Laboratory Analysis OA/OC Certification Form

RCP Me	() 8270C () 8081A () VPH () 6020 () 7470A/1A) 9014M) 7196A
1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria failing outside of acceptable guidelines, as specified in the CTDEP method-specific Reasonable Confidence Protocol documents?	Yes (X) No ()
1A	Were the method specified preservation and holding time requirements met?	Yes (X) No ()
1B	<u>VPH and EPH Methods only:</u> Was the VPH or EPH method conducted without significant modifications (see Section 11.3 of respective RCP methods)?	Yes () No () N/A (X)
2	Were all samples received by the laboratory in a condition consistent with that described on the associated chain-of-custody document(s)?	Yes (X) No ()
3	Were samples received at an appropriate temperature (<6° C°)?	Yes (X No () N/A ()
4	Were all QA/QC performance criteria specified in the CTDEP Reasonable Confidence Protocol documents achieved?	Yes (X) No ()
5	a) Were reporting limits specified or referenced on the chain-of-custody? b) Were these reporting limits met?	Yes (X) No () Yes (X) No ()
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	Yes () No (X)
7	Are project-specific matrix spikes and laboratory duplicates included in this data set?	Yes () No (X

I, the undersigned, attest under the pains and penalties of perjury that, to the be-	st of my knowledge and belief and based upon my
personal inquiry of those responsible for providing the information contained in	n this analytical report, such information is accurate
and complete. Authorized Signature:	
Authorized Signature:	Position: <u>Laboratory Director</u>
Printed Name: Laurel Stoddard	Date: May 03, 2018
Name of Laboratory: ESS Laboratory	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

lient Name: GZA GeoEnvironmental, Inc.

lient Project ID: Whyco lient Sample ID: MW-2 ate Sampled: 04/25/18 10:36

ercent Solids: N/A

ESS Laboratory Work Order: 1804773 ESS Laboratory Sample ID: 1804773-01

Sample Matrix: Ground Water

Units: ug/L

xtraction Method: 3005A/200.7

<u>nalyte</u>	Results (MRL)	<u>MDL</u>	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>1/V</u>	<u>F/V</u>	Batch
admium	ND (2.5)		6010C		1	KJK	04/27/18 23:17	50	25	CD82739
hromium	107 (10_0)		6010C		1	KJK	04/27/18 23:17	50	25	CD82739
obalt	ND (10,0)		6010C		1	KJK	04/27/18 23:17	50	25	CD82739
opper	ND (10,0)		6010C		1	KJK	04/27/18 23:17	50	25	CD82739
ickel	421 (25.0)		6010C		1	KJK	04/27/18 23:17	50	25	CD82739

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

lient Name: GZA GeoEnvironmental, Inc.

lient Project ID: Whyco lient Sample ID: MW-10M ate Sampled: 04/25/18 11:05

ercent Solids: N/A

ESS Laboratory Work Order: 1804773 ESS Laboratory Sample ID: 1804773-02

Sample Matrix: Ground Water

Units: ug/L

xtraction Method: 3005A/200.7

<u>.nalyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	<u>Analyst</u>	Analyzed	<u>I/V</u>	<u>F/V</u>	Batch
admium	6.5 (2.5)		6010C		1	KJK	04/27/18 23:21	50	25	CD82739
hromium	392 (10,0)		6010C		1	KJK	04/27/18 23:21	50	25	CD82739
obalt	ND (10 _. 0)		6010C		1	KJK	04/27/18 23:21	50	25	CD82739
opper	ND (10.0)		6010C		1	KJK	04/27/18 23:21	50	25	CD82739
ickel	76.5 (25.0)		6010C		1	KJK	04/27/18 23:21	50	25	CD82739

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

lient Name: GZA GeoEnvironmental, Inc.

lient Project ID: Whyco lient Sample ID: MW-10D ate Sampled: 04/25/18 11:36

ercent Solids: N/A

ESS Laboratory Work Order: 1804773 ESS Laboratory Sample ID: 1804773-03

Sample Matrix: Ground Water

Units: ug/L

xtraction Method: 3005A/200.7

nalyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst		<u>1/V</u>	<u>F/V</u>	Batch
admium	3.1 (2.5)		6010C			KJK	04/27/18 23:25	50	25	CD82739
hromium	35.9 (10.0)		6010C		1	KJK	04/27/18 23:25	50	25	CD82739
obalt	ND (10.0)		6010C		1.	KJK	04/27/18 23:25	50	25	CD82739
opper	11.9 (10.0)		6010C		1.	KJK	04/27/18 23:25	50	25	CD82739
ickel	127 (25.0)		6010C		1	KJK	04/27/18 23:25	50	25	CD82739

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

lient Name: GZA GeoEnvironmental, Inc.

lient Project ID: Whyco lient Sample ID: MW-11M ate Sampled: 04/25/18 12:09

ercent Solids: N/A

ESS Laboratory Work Order: 1804773 ESS Laboratory Sample ID: 1804773-04

Sample Matrix: Ground Water

Units: ug/L

xtraction Method: 3005A/200.7

<u>nalyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	I/V	<u>F/V</u>	Batch
admium	ND (2.5)		6010C		1	KJK	04/27/18 23:29	50	25	CD82739
hromium	56.2 (10.0)		6010C		1	KJK	04/27/18 23:29	50	25	CD82739
obalt	ND (10.0)		6010C		Į.	KJK	04/27/18 23:29	50	25	CD82739
opper	ND (10.0)		6010C		Ĭ	KJK	04/27/18 23:29	50	25	CD82739
ickel	98.1 (25.0)		6010C		ĩ	KJK	04/27/18 23:29	50	25	CD82739

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

lient Name: GZA GeoEnvironmental, Inc.

lient Project ID: Whyco lient Sample ID: MW-11D ate Sampled: 04/25/18 12:49

ercent Solids: N/A

xtraction Method: 3005A/200.7

ESS Laboratory Work Order: 1804773 ESS Laboratory Sample ID: 1804773-05

Sample Matrix: Ground Water

Units: ug/L

<u>nalyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	1/V	F/V	Batch
admium	ND (2.5)		6010C		1	KJK	04/27/18 23:46	50	25	CD82739
hromium	ND (10.0)		6010C		1	KJK	04/27/18 23:46	50	25	CD82739
obalt	ND (10.0)		6010C		1	KJK	04/27/18 23:46	50	25	CD82739
opper	ND (10.0)		6010C		1	KJK	04/27/18 23:46	50	25	CD82739
ickel	ND (25.0)		6010C		1	KJK	04/27/18 23:46	50	25	CD82739

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

lient Name: GZA GeoEnvironmental, Inc.

lient Project ID: Whyco lient Sample ID: MW-8D ate Sampled: 04/25/18 13:23

ercent Solids: N/A

ESS Laboratory Work Order: 1804773 ESS Laboratory Sample ID: 1804773-06

Sample Matrix: Ground Water

Units: ug/L

xtraction Method: 3005A/200.7

<u>nalyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	I/V	$\mathbf{F/V}$	Batch
admium	ND (2.5)		6010C		1	KJK	04/27/18 23:50	50	25	CD82739
hromium	48.0 (10.0)		6010C		1	KJK	04/27/18 23:50	50	25	CD82739
obalt	ND (10.0)		6010C		1	KJK	04/27/18 23:50	50	25	CD82739
opper	12.3 (10.0)		6010C		Ī	KJK	04/27/18 23:50	50	25	CD82739
ickel	101 (25.0)		6010C		1	KJK	04/27/18 23:50	50	25	CD82739

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

lient Name: GZA GeoEnvironmental, Inc.

lient Project ID: Whyco lient Sample ID: MW-8 ate Sampled: 04/25/18 13:52

ercent Solids: N/A

ESS Laboratory Work Order: 1804773 ESS Laboratory Sample ID: 1804773-07

Sample Matrix: Ground Water

Units: ug/L

xtraction Method: 3005A/200.7

<u>nalyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
admium	ND (2.5)		6010C		1	KJK	04/27/18 23:54	50	25	CD82739
hromium	28.0 (10.0)		6010C		1	KJK	04/27/18 23:54	50	25	CD82739
obalt	ND (10.0)		6010C		1	KJK	04/27/18 23:54	50	25	CD82739
opper	ND (10.0)		6010C		1	KJK	04/27/18 23:54	50	25	CD82739
ickel	56.6 (25.0)		6010C		1	KJK	04/27/18 23:54	50	25	CD82739

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

lient Name: GZA GeoEnvironmental, Inc.

lient Project ID: Whyco ESS Laboratory Work Order: 1804773

Quality Control Data

				Spike	Source		%REC		RPD	
nalyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
			Total Meta	als						
itch CD82739 - 3005A/200.7										
ank										
dmium	ND	2.5	ug/L							
romium	ND	10.0	ug/L							
balt	ND	10.0	ug/L							
pper	ND	10.0	ug/L							
ckel	ND	25.0	ug/L							
:s										
dmium	121	2.5	ug/L	125.0		96	80-120			
romium	253	10.0	ug/L	250.0		101	80-120			
balt	263	10.0	ug/L	250.0		105	80-120			
pper	255	10.0	ug/L	250.0		102	80-120			
skel	256	25.0	ug/L	250.0		102	80-120			
:S Dup										
dmium	122	2.5	ug/L	125.0		97	80-120	1	20	
romium	251	10.0	ug/L	250.0		100	80-120	0.7	20	
balt	267	10.0	ug/L	250.0		107	80-120	1	20	
ipper	251	10.0	ug/L	250.0		100	80-120	2	20	
ckel	252	25.0	ug/L	250.0		101	80-120	2	20	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

lient Name: GZA GeoEnvironmental, Inc.

lient Project ID: Whyco ESS Laboratory Work Order: 1804773

Notes and Definitions

U	Analyte included in the analysis, but not detected
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
MRL	Method Reporting Limit
LOD LOQ	Limit of Detection Limit of Quantitation
DL	Detection Limit
I/V	Initial Volume
F/V	Final Volume
§	Subcontracted analysis; see attached report
1	Range result excludes concentrations of surrogates and/or internal standards eluting in that range.
2	Range result excludes concentrations of target analytes eluting in that range.
3	Range result excludes the concentration of the C9-C10 aromatic range.
Avg	Results reported as a mathematical average.
NR	No Recovery

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL Estimated Detection Limit

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

lient Name: GZA GeoEnvironmental, Inc.

lient Project ID: Whyco

ESS Laboratory Work Order: 1804773

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories/pdf/OutofStateCommercialLaboratories.pdf

> Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecde/environmental-health/dwp/partners/labCert.shtml

> > Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP OPRA/OpraMain/pi main?mode=pi by site&sort order=PI NAMEA&Scleet+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752

http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

ESS Laboratory Sample and Cooler Receipt Checklist

	2112-12-2	- Glastonbu	ry CT - GZA	VMM		ESS Project		1804773 4/26/2018	 ,
Shipped/D	elivered Via:		ESS Courie			Project Due I	Date:	5/3/2018 5 Day	<u> </u>
	nanifest prese			No]		6. Does COC mate			Yes
2. Were cu	ustody seals ;	present?		No		7. Is COC complet	e and correct?	,	Yes
3. Is radiat	ion count <1	00 CPM?		Yes		8. Were samples r	eceived intact?	,	Yes
	oler Present?	Iced with:	lce	Yes		9. Were labs info	rmed about <u>s</u>	hort holds & rushes?	Yes / No / NA
		d dated by cl		Yes	:= :-	10. Were any ana	lyses received	outside of hold time?	Yes (No)
	bcontracting Sample IDs: Analysis; TAT:			1 (10)	:	12. Were VOAs re a. Air bubbles in a b. Does methanoi	queous VOAs		Yes / No Yes / No Yes / No / NA
a. If metals	e samples pro s preserved u rei VOA vials		ved?	Yes / No Date: Date:	255	Time:		By:	
Sample Re	ceiving Notes	S :							
	ere a need to	o contact Pro contact the c		er? Date: _	Yes / No Yes / No	Time:		Ву:	_
=	149						i i		
Sample Number	Container ID	Proper Container	Air Bubbles Present	Sufficient Volume	Container	г Туре	Preservative	Record pH (Cya Pestic	
Number 01	ID 222414	Container Yes	Bubbles Present NA	Volume Yes	250 mL Poly	/ - HNO3	Preservative		
01 02	ID 222414 222415	Yes Yes	Bubbles Present NA NA	Volume Yes Yes	250 mL Poly 250 mL Poly	/ - HNO3 / - HNO3	HNO3		
Number 01	222414 222415 222416 222417	Container Yes	Bubbles Present NA	Volume Yes	250 mL Poly	/ - HNO3 / - HNO3 / - HNO3	HNO3 HNO3 HNO3		
01 02 03 04 05	222414 222415 222416 222417 222418	Yes Yes Yes Yes Yes Yes Yes Yes	Present NA NA NA NA NA NA NA NA	Yes Yes Yes Yes Yes	250 mL Poly 250 mL Poly 250 mL Poly 250 mL Poly 250 mL Poly	y - HNO3 y - HNO3 y - HNO3 y - HNO3 y - HNO3	HNO3 HNO3 HNO3 HNO3		
01 02 03 04 05 06	222414 222415 222416 222417 222418 222419	Yes Yes Yes Yes Yes Yes Yes Yes Yes	Bubbles Present NA NA NA NA NA	Yes Yes Yes Yes Yes Yes Yes Yes Yes	250 mL Poly 250 mL Poly 250 mL Poly 250 mL Poly 250 mL Poly 250 mL Poly	/ - HNO3 / - HNO3 / - HNO3 / - HNO3 / - HNO3 / - HNO3	HNO3 HNO3 HNO3 HNO3 HNO3		
01 02 03 04 05	222414 222415 222416 222417 222418	Yes Yes Yes Yes Yes Yes Yes Yes	Present NA NA NA NA NA NA NA NA	Yes Yes Yes Yes Yes	250 mL Poly 250 mL Poly 250 mL Poly 250 mL Poly 250 mL Poly	/ - HNO3 / - HNO3 / - HNO3 / - HNO3 / - HNO3 / - HNO3	HNO3 HNO3 HNO3 HNO3		
01 02 03 04 05 06 07 08	222414 222415 222416 222417 222418 222419 222420 222743 222744	Yes	Bubbles Present NA NA NA NA NA NA NA NA	Yes	250 mL Poly 250 mL Poly	/- HNO3 /- HNO3 /- HNO3 /- HNO3 /- HNO3 /- HNO3 /- HNO3 /- HNO3	HNO3 HNO3 HNO3 HNO3 HNO3 HNO3 HNO3 HNO3		
01 02 03 04 05 06 07 08 09	222414 222415 222416 222417 222418 222419 222420 222743 222744 222745	Yes	Bubbles Present NA NA NA NA NA NA NA NA NA	Yes	250 mL Poly 250 mL Poly	/- HNO3 /- HNO3 /- HNO3 /- HNO3 /- HNO3 /- HNO3 /- HNO3 /- HNO3	HNO3 HNO3 HNO3 HNO3 HNO3 HNO3 HNO3 HNO3		
01 02 03 04 05 06 07 08 09 10	222414 222415 222416 222417 222418 222419 222420 222743 222744 222745 222746	Yes	Bubbles Present NA NA NA NA NA NA NA NA NA	Yes	250 mL Poly 250 mL Poly	/- HNO3 /- HNO3 /- HNO3 /- HNO3 /- HNO3 /- HNO3 /- HNO3 /- HNO3 /- HNO3	HNO3 HNO3 HNO3 HNO3 HNO3 HNO3 HNO3 HNO3		
01 02 03 04 05 06 07 08 09 10 11 12 12	222414 222415 222416 222417 222418 222419 222420 222743 222744 222745 222746 222747 222750	Yes	Bubbles Present NA NA NA NA NA NA NA NA NA	Yes	250 mL Poly 250 mL Poly	/- HNO3 /- HNO3 /- HNO3 /- HNO3 /- HNO3 /- HNO3 /- HNO3 /- HNO3 /- HNO3 /- HNO3	HNO3 HNO3 HNO3 HNO3 HNO3 HNO3 HNO3 HNO3		
01 02 03 04 05 06 07 08 09 10 11 12 12	222414 222415 222416 222417 222418 222419 222420 222743 222744 222745 222746 222747 222750 222751	Yes	Bubbles Present NA	Yes	250 mL Poly 250 mL Poly	/- HNO3 /- HNO3	HNO3 HNO3 HNO3 HNO3 HNO3 HNO3 HNO3 HNO3		
01 02 03 04 05 06 07 08 09 10 11 12 12	222414 222415 222416 222417 222418 222419 222420 222743 222744 222745 222746 222747 222750	Yes	Bubbles Present NA NA NA NA NA NA NA NA NA NA NA	Yes	250 mL Poly 250 mL Poly	/- HNO3 /- HNO3	HNO3 HNO3 HNO3 HNO3 HNO3 HNO3 HNO3 HNO3	Pestic	
01 02 03 04 05 06 07 08 09 10 11 12 12 12 13	222414 222415 222416 222417 222418 222419 222420 222743 222744 222745 222746 222747 222750 222751 222748 222749	Yes	Bubbles Present NA NA NA NA NA NA NA NA NA NA NA NA NA	Yes	250 mL Poly 250 mL Poly	/- HNO3 /- HNO3	HNO3 HNO3 HNO3 HNO3 HNO3 HNO3 HNO3 HNO3	Pestic	
01 02 03 04 05 06 07 08 09 10 11 12 12 12 13	222414 222415 222416 222417 222418 222419 222420 222743 222744 222745 222746 222747 222750 222751 222748 222749	Yes	Bubbles Present NA NA NA NA NA NA NA NA NA NA NA NA NA	Yes	250 mL Poly 250 mL Poly	/- HNO3 /- HNO3	HNO3 HNO3 HNO3 HNO3 HNO3 HNO3 HNO3 HNO3	Pestic	

ESS Laboratory Sample and Cooler Receipt Checklist

Cllent:	GZA - Glastonbury CT - GZA/MM		ESS Project ID:	1804773	
		==	Date Received:	4/26/2018	
By:	<u> </u>	Date & Time:	4/24/4	154/	_
Delivered By:	(2)		yralis	1941	

ESS Laboratory	A.HO		CHAIN OF CUSTODY		ESS LAB PROJECTID 3
Division of Intelsch Engineering, Inc. 185 Frances Avanue Crancton, DI 000	Division of Intelsch Engineering, Inc. 185 Frances Avenue Crancton, DI 00010	Turn Time	→ Standard Rush Approved By:	.;	Reporting Limits -
2211 Tel. (401) 461-	2211 Tel. (401) 461-7181 Fax (401) 461-4486		S E	NY ME Other	GENPC SUPE
www.esslaboratory.com	com		Is this project for any of the following: (please circle) MA-MCP CT-RCP RGP Other	Electonic Deliverable Format: Excel	ble Yes X No
GZA Project Manager:	Manager: Chris Prex		Project # 1/4541	(70)	
	GZA GeoEnvironmental, Inc.	ಚ	Project Name:	sis (PC)	i
655	655 Winding Brook Drive, Suite 402 Glastonbury, CT 06033	402	Whyco	eylen (Se	# 343
	(860) 286-8900 REASONABLE CONFIDENCE PROTOCOLS REQUIRED	SREOUIRED	Contract Pricing Special Pricing	(A)	шию
ESS Lab Date Sample ID	Collection Grab -G Time Composite-C	Matrix	Sample Identification	# of Containers)
1 4-35-16	F) 9801 2	3	6-mm	7	
10	1105		MW-10M	×	
~ ::	1136		001- WM	~	
7	(30%)		MC II M	~	
vc -	1379		MW-1113	-	
۵	(3)		MW-60	_	
4	1 851	7	M W -6	_	
Preservation Code: 1-NP, 2-	Preservation Code: 1-NP, 2-HCl, 3-H2SO4, 4-HNO3, 5-NaOH, 6-McOH, 7-Ascorbic Acid	6-MeOH, 7-Ascorb	ic Acid, 8-ZnAce 9-	77	
Container Type: P-Poly G-G	Container Type: P-Poly G-Glass AG-Amber Glass S-Sterile V-VOA	VOA		C.	
Matrix: S-Soil SD-Solid D-S Cooler Present	Matrix: S-Soil SD-Solid D-Sjidge WW-Wastewater GW-Groundwater SW-Surface Water Cooler Present Yes No Sampled by:	ndwater SW-Surfa Sampled by:	ce Water DW-Drinking Water O-Oil W-Wipes F-Filter		
Seals Intact Yes	S No NA	Comments: mayed s	,,		
Refriquished by: (Signature)	Date Time	100	(e) 14 - 1-35-16 Remaisfed by: (Signature)	Date/Time	Reprived by (Suprature) 16 (1:48
	8 18:04 Date line	Received by (signature)	These R-mail all changes to Chain of Custody in writing	Date/Time	Repaired by (Signature)
- ب			See and the state of the state	willing.	

Page ____of_

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Christopher J. Frey GZA GeoEnvironmental, Inc. 655 Winding Brook Drive Suite 402 Glastonbury, CT 06033

RE: Whyco (05.0044541)

ESS Laboratory Work Order Number: 1804834

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director **REVIEWED**

By ESS Laboratory at 3:36 pm, May 04, 2018

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

lient Name: GZA GeoEnvironmental, Inc.

lient Project ID: Whyco

ESS Laboratory Work Order: 1804834

SAMPLE RECEIPT

he following samples were received on April 27, 2018 for the analyses specified on the enclosed Chain of Custody Record.

o achieve Reasonable Confidence Protocols (RCP) compliance for Connecticut data, ESS Laboratory has reviewed all A/QC Requirements and Performance Standards listed in each method. Holding times and preservation have also been viewed. All RCP requirements have been performed and achieved unless noted in the project narrative.

luestion 5: Each method has been set-up in the laboratory to reach required RCP standards. The methods for aqueous OA and Soil Methanol VOA have known limitations for certain analytes (ie for GWPC samples, 1,2-Dibromoethane egulatory levels will not be met by VOA 8260. If this is a contaminant of concern Method 8011 will need to be used.). The regulatory standards may not be achieved due to these limitations. In addition, for all methods, matrix iterferences, dilutions, and %Solids may elevate method reporting limits above regulatory standards. ESS aboratory can provide, upon request, a Data Checker (regulatory standard comparison spreadsheet) electronic eliverable which will highlight these exceedances.

Juestion 6: All samples for Metals were analyzed for a subset of the required RCP list per the client's request.

ab Number	Sample Name	Matrix	Analysis
804834-01	MW-3	Ground Water	6010C
804834-02	MW-3BD	Ground Water	6010C
804834-03	WC-3	Ground Water	6010C
804834-04	MW-4BD	Ground Water	6010C
804834-05	WC-4	Ground Water	6010C
804834-06	MW-1BD	Ground Water	6010C
804834-07	WC-1A	Ground Water	6010C
804834-08	WC-2	Ground Water	6010C

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

lient Name: GZA GeoEnvironmental, Inc.

lient Project ID: Whyco

ESS Laboratory Work Order: 1804834

PROJECT NARRATIVE

o unusual observations noted.

nd of Project Narrative.

DATA USABILITY LINKS

o ensure you are viewing the most current version of the documents below, please clear your internet cookies for ww.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

efinitions of Quality Control Parameters

emivolatile Organics Internal Standard Information

emivolatile Organics Surrogate Information

olatile Organics Internal Standard Information

olatile Organics Surrogate Information

PH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

• Service

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

lient Name: GZA GeoEnvironmental, Inc.

lient Project ID: Whyco ESS Laboratory Work Order: 1804834

CURRENT SW-846 METHODOLOGY VERSIONS

analytical Methods

010A - Flashpoint

010C - ICP

020A - ICP MS

010 - Graphite Furnace

196A - Hexavalent Chromium

470A - Aqueous Mercury

471B - Solid Mercury

011 - EDB/DBCP/TCP

015C - GRO/DRO

081B - Pesticides

082A - PCB

100M - TPH

151A - Herbicides

260B - VOA

270D - SVOA

270D SIM - SVOA Low Level

014 - Cyanide

038 - Sulfate

040C - Aqueous pH

045D - Solid pH (Corrosivity)

050A - Specific Conductance

056A - Anions (IC)

060A - TOC

095B - Paint Filter

1ADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

W846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These rethods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

lient Name: GZA GeoEnvironmental, Inc.

lient Project ID: Whyco ESS Laboratory Work Order: 1804834

Laboratory Analysis

	QA/QC Certification Form	
Sampling Do Laboratory S List RCP Me	() 8270C () 8081A () VPH () 6020 () 7470A/1A) 9014M) 7196A
1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria failing outside of acceptable guidelines, as specified in the CTDEP method-specific Reasonable Confidence Protocol documents?	Yes (X) No()
1A	Were the method specified preservation and holding time requirements met?	Yes (X) No ()
1B	<u>VPH and EPH Methods only:</u> Was the VPH or EPH method conducted without significant modifications (see Section 11.3 of respective RCP methods)?	Yes () No () N/A (X)
2	Were all samples received by the laboratory in a condition consistent with that described on the associated chain-of-custody document(s)?	Yes (X) No ()
3	Were samples received at an appropriate temperature (<6° C°)?	Yes (X) No () N/A ()
4	Were all QA/QC performance criteria specified in the CTDEP Reasonable Confidence Protocol documents achieved?	Yes (X) No ()
5	a) Were reporting limits specified or referenced on the chain-of-custody?b) Were these reporting limits met?	Yes (X) No () Yes (X) No ()
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	Yes () No (X)
7	Are project-specific matrix spikes and laboratory duplicates included in this data set?	Yes (X) No ()
	r all questions to which the response was "No" (with the exception of question #7), additional information must be in attached narrative. If the answer to question #1, #1 A or #1B is "No", the data package does not meet the	

requirements for "Reasonable Confidence." This form may not be altered and all questions must be answered.

I, the undersigned, attest under the pains and penalties of perjury that, to the bes	st of my knowledge and belief and based upon my
personal inquiry of those responsible for providing the information contained in	this analytical report, such information is accurate
and complete.	
Authorized Signature:	Position: <u>Laboratory Director</u>
Printed Name: <u>Laurel Stoddard</u>	Date: May 04, 2018
Name of Laboratory: ESS Laboratory	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

lient Name: GZA GeoEnvironmental, Inc.

lient Project ID: Whyco lient Sample ID: MW-3 ate Sampled: 04/26/18 08:59

ercent Solids: N/A

ESS Laboratory Work Order: 1804834 ESS Laboratory Sample ID: 1804834-01

Sample Matrix: Ground Water

Units: ug/L

xtraction Method: 3005A/200.7

<u>nalyte</u>	Results (MRL)	MDL	Method	Limit	<u>DF</u>	Analyst	Analyzed	I/V	\mathbf{F}/\mathbf{V}	Batch
admium	ND (2.5)		6010C		1	KJK	05/01/18 19:15	50	25	CD83034
hromium	97.5 (10.0)		6010C		1	KJK	05/01/18 19:15	50	25	CD83034
obalt	ND (10.0)		6010C		1	KJK	05/01/18 19:15	50	25	CD83034
opper	ND (10.0)		6010C		1	KJK	05/01/18 19:15	50	25	CD83034
ickel	35.8 (25.0)		6010C		1	KJK	05/01/18 19:15	50	25	CD83034

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

lient Name: GZA GeoEnvironmental, Inc.

lient Project ID: Whyco lient Sample ID: MW-3BD ate Sampled: 04/26/18 09:26

ercent Solids: N/A

ESS Laboratory Work Order: 1804834 ESS Laboratory Sample ID: 1804834-02

Sample Matrix: Ground Water

Units: ug/L

xtraction Method: 3005A/200.7

<u>nalyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	<u>F/V</u>	Batch
admium	ND (2.5)		6010C		F	KJK	05/01/18 19:19	50	25	CD83034
hromium	ND (10.0)		6010C		1	KJK	05/01/18 19:19	50	25	CD83034
obalt	ND (10 _* 0)		6010C		1	KJK	05/01/18 19:19	50	25	CD83034
opper	ND (10.0)		6010C		1	KJK	05/01/18 19:19	50	25	CD83034
ickel	80.9 (25.0)		6010C		1	KJK	05/01/18 19:19	50	25	CD83034

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

lient Name: GZA GeoEnvironmental, Inc.

lient Project ID: Whyco lient Sample ID: WC-3 vate Sampled: 04/26/18 09:55

ercent Solids: N/A

ed: 04/26/18 09:55

xtraction Method: 3005A/200.7

ESS Laboratory Work Order: 1804834 ESS Laboratory Sample ID: 1804834-03

Sample Matrix: Ground Water

Units: ug/L

nalyte	Results (MRL)	<u>MDL</u>	Method	<u>Limit</u>	DF	Analyst	Analyzed	<u>1/V</u>	F/V	Batch
admium	ND (2.5)		6010C		1	KJK	05/01/18 19:23	50	25	CD83034
hromium	44.9 (10.0)		6010C		1	KJK	05/01/18 19:23	50	25	CD83034
obalt	ND (10.0)		6010C		1	KJK	05/01/18 19:23	50	25	CD83034
opper	25.9 (10.0)		6010C		1	KJK	05/01/18 19:23	50	25	CD83034
ickel	226 (25.0)		6010C		1	KJK	05/01/18 19:23	50	25	CD83034

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

lient Name: GZA GeoEnvironmental, Inc.

lient Project ID: Whyco lient Sample ID: MW-4BD ate Sampled: 04/26/18 10:41

ercent Solids: N/A

ESS Laboratory Work Order: 1804834 ESS Laboratory Sample ID: 1804834-04

Sample Matrix: Ground Water

Units: ug/L

xtraction Method: 3005A/200.7

<u>nalyte</u>	Results (MRL)	MDL	Method	Limit	DF	Analyst	Analyzed	<u>I/V</u>	<u>F/V</u>	Batch
admium	ND (2.5)		6010C		1	KJK	05/01/18 19:28	50	25	CD83034
hromium	ND (10.0)		6010C		1	KJK	05/01/18 19:28	50	25	CD83034
obalt	ND (10,0)		6010C		1	KJK	05/01/18 19:28	50	25	CD83034
opper	ND (10.0)		6010C		1	KJK	05/01/18 19:28	50	25	CD83034
ickel	ND (25.0)		6010C		1	KJK	05/01/18 19:28	50	25	CD83034

The Microbiology Division of Thiclsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

lient Name: GZA GeoEnvironmental, Inc.

lient Project ID: Whyco lient Sample ID: WC-4 vate Sampled: 04/26/18 11:08

ercent Solids: N/A

ESS Laboratory Work Order: 1804834 ESS Laboratory Sample ID: 1804834-05

Sample Matrix: Ground Water

Units: ug/L

xtraction Method: 3005A/200.7

nalyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
admium	ND (2,5)		6010C		1	KJK	05/01/18 19:44	50	25	CD83034
hromium	40.4 (10.0)		6010C		1	KJK	05/01/18 19:44	50	25	CD83034
obalt	ND (10.0)		6010C		1	KJK	05/01/18 19:44	50	25	CD83034
opper	25.9 (10,0)		6010C		1.	KJK	05/01/18 19:44	50	25	CD83034
ickel	195 (25.0)		6010C		1	KJK	05/01/18 19:44	50	25	CD83034

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

lient Name: GZA GeoEnvironmental, Inc.

lient Project ID: Whyco lient Sample ID: MW-1BD ate Sampled: 04/26/18 11:36

ercent Solids: N/A

ESS Laboratory Work Order: 1804834 ESS Laboratory Sample ID: 1804834-06

Sample Matrix: Ground Water

Units: ug/L

xtraction Method: 3005A/200.7

<u>nalyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	<u>F/V</u>	Batch
admium	ND (2.5)		6010C		F	KJK	05/01/18 19:49	50	25	CD83034
hromium	ND (10.0)		6010C		1	KJK	05/01/18 19:49	50	25	CD83034
obalt	ND (10.0)		6010C		Ĺ	KJK	05/01/18 19:49	50	25	CD83034
opper	ND (10.0)		6010C		1	KJK	05/01/18 19:49	50	25	CD83034
ickel	ND (25.0)		6010C		1	KJK	05/01/18 19:49	50	25	CD83034

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

lient Name: GZA GeoEnvironmental, Inc.

lient Project ID: Whyco lient Sample ID: WC-1A ate Sampled: 04/26/18 12:03

ercent Solids: N/A

ESS Laboratory Work Order: 1804834 ESS Laboratory Sample ID: 1804834-07

Sample Matrix: Ground Water

Units: ug/L

xtraction Method: 3005A/200.7

<u>nalyte</u>	Results (MRL)	MDL	Method	Limit	<u>DF</u>	Analyst	Analyzed	I/V	<u>F/V</u>	Batch
admium	15.5 (2.5)		6010C		1	KJK	05/01/18 19:53	50	25	CD83034
hromium	1460 (10.0)		6010C		1	KJK	05/01/18 19:53	50	25	CD83034
obalt	15.3 (10.0)		6010C		1	KJK	05/01/18 19:53	50	25	CD83034
opper	147 (10.0)		6010C		1	KJK	05/01/18 19:53	50	25	CD83034
ickel	369 (25,0)		6010C		1	KJK	05/01/18 19:53	50	25	CD83034

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

lient Name: GZA GeoEnvironmental, Inc.

lient Project ID: Whyco

ESS Laboratory Work Order: 1804834

Quality Control Data

					Spike	Source	0.000	%REC		RPD	0 15
nalyte		Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
				Total Meta	als						
itch CD83034 - 3	005A/200.7										
ank											
dmium		ND	2.5	ug/L							
romium		ND	10.0	ug/L							
balt		ND	10.0	ug/L							
pper		ND	10.0	ug/L							
ckel		ND	25.0	ug/L							
:S											
dmium		118	2,5	ug/L	125.0		95	80-120			
romīum		237	10.0	ug/L	250.0		95	80-120			
balt		245	10.0	ug/L	250.0		98	80-120			
pper		243	10.0	ug/L	250.0		97	80-120			
:kel		232	25.0	ug/L	250.0		93	80-120			
S Dup											
dmium		122	2.5	ug/L	125.0		98	80-120	3	20	
romium		246	10.0	ug/L	250.0		98	80-120	4	20	
balt		252	10.0	ug/L	250.0		101	80-120	3	20	
pper		255	10.0	ug/L	250.0		102	80-120	5	20	
ckel		240	25.0	ug/L	250.0		96	80-120	3	20	
plicate	Source: 1804834-07										
dmium		15.9	2.5	ug/L		15.5			3	20	
romium		1470	10.0	ug/L		1460			1	20	
balt		16.0	10.0	ug/L		15.3			5	20	
pper		147	10.0	ug/L		147			0.02	20	
ckel		374	25.0	ug/L		369			1	20	
atrix Spike	Source: 1804834-07										
dmium		138	2.5	ug/L	125.0	15.5	98	75-125			
romium		1770	10.0	ug/L	250.0	1460	125	75-125			
balt		262	10.0	ug/L	250.0	15.3	99	75-125			
pper		391	10.0	ug/L	250.0	147	97	75-125			
:kel		614	25.0	ug/L	250.0	369	98	75-125			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

lient Name: GZA GeoEnvironmental, Inc.

lient Project ID: Whyco lient Sample ID: WC-2 ate Sampled: 04/26/18 12:39

ercent Solids: N/A

ESS Laboratory Work Order: 1804834 ESS Laboratory Sample ID: 1804834-08

Sample Matrix: Ground Water

Units: ug/L

xtraction Method: 3005A/200.7

Total Metals

<u>nalyte</u> admium	Results (MRL) 12.5 (2.5)	MDL	Method 6010C	Limit	<u>DF</u>	Analyst KJK	Analyzed 05/01/18 20:14	<u>I/V</u> 50	<u>F/V</u> 25	Batch CD83034
hromium	577 (10.0)		6010C		ï	KJK	05/01/18 20:14	50	25	CD83034
obalt	14.3 (10.0)		6010C		1	KJK	05/01/18 20:14	50	25	CD83034
opper	57.9 (10.0)		6010C		1	KJK	05/01/18 20:14	50	25	CD83034
ickel	394 (25.0)		6010C		1	KJK	05/01/18 20:14	50	25	CD83034

Page 13 of 18

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

lient Name: GZA GeoEnvironmental, Inc.

lient Project ID: Whyco ESS Laboratory Work Order: 1804834

Notes and Definitions

U	Analyte included in the analysis, but not detected
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
MRL	Method Reporting Limit
LOD	Limit of Detection
LOQ	Limit of Quantitation
DL	Detection Limit
I/V	Initial Volume
F/V	Final Volume

Subcontracted analysis; see attached report

Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range. 3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

No Recovery NR

Calculated Analyte [CALC]

SUB Subcontracted analysis; see attached report

Reporting Limit RL

EDL Estimated Detection Limit

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

lient Name: GZA GeoEnvironmental, Inc.

lient Project ID: Whyco

ESS Laboratory Work Order: 1804834

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752

http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

ESS Laboratory Sample and Cooler Receipt Checklist

Client Shipped/C	GZA elivered Via:		ESS Courie	r	ESS Dal Projec	te Received: ct Due Date:	4/27/2018 5/4/2018	
					Days	for Project:	5 Day	
	nanifest pres			No	6. Does CO	OC match bottles?		Yes
2. Were c	ustody seals	present?		No	7. Is COC o	complete and correct?	•	Yes
3. is radial	ion count <1	00 CPM?		Yes	8. Were sar	mples received intact?	?	Yes
	oler Present?		lce	Yes	9. Were lat	bs informed about <u>s</u>	hort holds & rushes?	Yes / No N
	DC signed an			Yes	10. Were a	ny analyses received	outside of hold time?	Yes (No
	bcontracting Sample IDs: Analysis: TAT:			R	a. Air bubb	'OAs received? les in aqueous VOAs' ethanol cover soil com		Yes (No Yes / No Yes / No / N/
a. If metal:	e samples pro s preserved u vel VOA vials	pon receipt:	ved?	Yes)/ No Date: Date:	Time:		By:	=
14 Mac H	noro a need t	o contact Pro	niget Manag	or?	Vac (bia			
	nere a need to ontacted?			er? Date:	Yes (No Yes) No Time:		Ву:	
a. Was the	ere a need to		cilent?		Yes / No	174	By:	
a. Was the	ere a need to		Air Bubbles		Yes / No	Preservative	By:Record pH (Cyan Pestic	anide and 608
a. Was the Who was c	ere a need to ontacted?	Proper	Alr	Date:	Yes / No Time:	1//	Record pH (Cy	anide and 608
Sample Number	Container ID 222852 222851	Proper Container Yes Yes	Alr Bubbles Present NA NA	Sufficient Volume Yes Yes	Container Type 250 mL Poly - HNO3 250 mL Poly - HNO3	Preservative HNO3 HNO3	Record pH (Cy	anide and 608
Sample Number 01 02 03	Container ID 222852 222851 222850	Proper Container Yes Yes Yes	Air Bubbles Present NA NA NA	Sufficient Volume Yes Yes Yes	Container Type 250 mL Poly - HNO3 250 mL Poly - HNO3 250 mL Poly - HNO3	Preservative HNO3 HNO3 HNO3 HNO3	Record pH (Cy	anide and 608
Sample Number 01 02 03 04	Container ID 222852 222851 222850 222849	Proper Container Yes Yes Yes Yes	Air Bubbles Present NA NA NA	Sufficient Volume Yes Yes Yes Yes	Container Type 250 mL Poly - HNO3	Preservative HNO3 HNO3 HNO3 HNO3 HNO3	Record pH (Cy	anide and 608
Sample Number 01 02 03 04 05	Container ID 222852 222851 222850 222849 222848	Proper Container Yes Yes Yes Yes Yes	Air Bubbles Present NA NA NA NA	Sufficient Volume Yes Yes Yes Yes Yes	Container Type 250 mL Poly - HNO3	Preservative HNO3 HNO3 HNO3 HNO3 HNO3 HNO3	Record pH (Cy	anide and 608
Sample Number 01 02 03 04 05 06	Container ID 222852 222851 222850 222849 222848 222847	Proper Container Yes Yes Yes Yes Yes Yes	Air Bubbles Present NA NA NA NA NA	Sufficient Volume Yes Yes Yes Yes Yes Yes	Container Type 250 mL Poly - HNO3	Preservative HNO3 HNO3 HNO3 HNO3 HNO3 HNO3 HNO3	Record pH (Cy	anide and 608
Sample Number 01 02 03 04 05	Container ID 222852 222851 222850 222849 222848 222847 222846	Proper Container Yes Yes Yes Yes Yes	Air Bubbles Present NA NA NA NA	Sufficient Volume Yes Yes Yes Yes Yes Yes Yes	Container Type 250 mL Poly - HNO3	Preservative HNO3 HNO3 HNO3 HNO3 HNO3 HNO3 HNO3 HNO3	Record pH (Cy	anide and 608
Sample Number 01 02 03 04 05 06 07	Container ID 222852 222851 222850 222849 222848 222847	Proper Container Yes Yes Yes Yes Yes Yes Yes	Air Bubbles Present NA NA NA NA NA NA	Sufficient Volume Yes Yes Yes Yes Yes Yes	Container Type 250 mL Poly - HNO3	Preservative HNO3 HNO3 HNO3 HNO3 HNO3 HNO3 HNO3 HNO3 HNO3	Record pH (Cy	anide and 608
Sample Number 01 02 03 04 05 06 07 07	Container ID 222852 222851 222850 222849 222848 222847 222846 222853	Proper Container Yes Yes Yes Yes Yes Yes Yes Yes	Air Bubbles Present NA NA NA NA NA NA	Sufficient Volume Yes Yes Yes Yes Yes Yes Yes Yes	Container Type 250 mL Poly - HNO3	Preservative HNO3 HNO3 HNO3 HNO3 HNO3 HNO3 HNO3 HNO3	Record pH (Cy	anide and 608
Sample Number 01 02 03 04 05 06 07 07 07 08	Container ID 222852 222851 222850 222849 222846 222853 222854 222845	Proper Container Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	Alr Bubbles Present NA NA NA NA NA NA NA NA	Sufficient Volume Yes Yes Yes Yes Yes Yes Yes Yes Yes Y	Container Type 250 mL Poly - HNO3	Preservative HNO3 HNO3 HNO3 HNO3 HNO3 HNO3 HNO3 HNO3 HNO3 HNO3	Record pH (Cy	anide and 608
Sample Number 01 02 03 04 05 06 07 07 07 08	Container ID 222852 222851 222850 222849 222846 222853 222854 222845	Proper Container Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	Alr Bubbles Present NA NA NA NA NA NA NA NA	Sufficient Volume Yes Yes Yes Yes Yes Yes Yes Yes Yes Y	Container Type 250 mL Poly - HNO3	Preservative HNO3 HNO3 HNO3 HNO3 HNO3 HNO3 HNO3 HNO	Record pH (Cy	anide and 608
Sample Number 01 02 03 04 05 06 07 07 07 08 2nd Review Are barcod Completed By: Reviewed	Container ID 222852 222851 222850 222849 222846 222853 222854 222845	Proper Container Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	Alr Bubbles Present NA NA NA NA NA NA NA NA	Sufficient Volume Yes Yes Yes Yes Yes Yes Yes Yes Yes Y	Container Type 250 mL Poly - HNO3	Preservative HNO3 HNO3 HNO3 HNO3 HNO3 HNO3 HNO3 HNO	Record pH (Cyr Pestic	anide and 608
Sample Number 01 02 03 04 05 06 07 07 08 2nd Review Are barcod Completed By:	Container ID 222852 222851 222850 222849 222846 222853 222854 222845	Proper Container Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	Alr Bubbles Present NA NA NA NA NA NA NA NA	Sufficient Volume Yes Yes Yes Yes Yes Yes Yes Yes Yes Y	Container Type 250 mL Poly - HNO3	Preservative HNO3 HNO3 HNO3 HNO3 HNO3 HNO3 HNO3 HNO	Record pH (Cy. Pestic	anide and 608

D حس ما Other	Соттепі #					10t 10t
B PROJECT ID KO-4 & 34 Round & -4 Charles - Charles -						Received by: (Signature) Received by: (Signature)
ESS LA Reportii	Lals (56€ bollow)	nu ××		* 1 1	7 3	Date/Time
ME Other Blectonic Deliverable Format: Excel = A		Containers		m		vriting.
Turn Time Standard Rush Approved By: State where samples were collected: MA RICT NH NJ NY N Is this project for any of the following: (please circle) MA-MCP CT-RCP RGP Other	Project Project Contrac	MM	WC-3	17 7 7	S-ZnAge	Container Type: P-Poly G-Glass AG-Amber Glass S-Sterile V-VOA Matrix: S-Soil SD-Solid D-Sludge WW-Wastewater GW-Groundwater SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filter Matrix: S-Soil SD-Solid D-Sludge WW-Wastewater GW-Groundwater SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filter Cooler Present Yes No No Sampled by: Act Color Color Present Yes No No Comments: Act Color
Turn Time State where Is this proje MA-MCP	402 S REQUIRE	Matrix C()			Y HOWN	North Comments: Comments: Received by: (Signa Received by: (Signa Received by: (Signa Received by: (Signa
910-	mental, Inc. rive, Suite 40 г 06033 8900	Grab -G Composite-C (5				Ss S-Sterile No No Date/Time
ineering, Inc Inston, RI 02 I Fax (401) ⁴	GZA Project Manager: (MAS FV&) GZA GeoEnvironmental, Inc. 655 Winding Brook Drive, Suite 402 Glastonbury, CT 06033 (860) 286-8900 REASONABLE CONFIDENCE PROTOCOLS REQUIRED	Collection Time	936	1136	1936	Preservation Code: 1-NP, 2-HCl, 3-PZSO4, 4-PNO3, 3-PAZO4, Container Type: P-Poly G-Glass AG-Amber Glass S-Sterile V-VOA Marrix: S-Soil SD-Solid D-Sludge WW-Wastewater GW-Groundwa Cooler Present Yes No No San Cooler Temperature: O Cooler Tempe
Oratory hielsch Engi Avenue, Cra 11) 461-718 ratory.com	GZA Project Manager: GZA GeoF 655 Winding I Glaston (86	Date U. C.	-			Special Designation of the state of the stat
ESS Laboratory Division of Thielsch Engineering, Inc. 185 Frances Avenue, Cranston, RI 02910- 2211 Tel. (401) 461-7181 Fax (401) 461-4486 www.esslaboratory.com	GZ.	ESS Lab Sample ID	NN:	e v t	74	Preservation Code: 1-NP. Container Type: P-Poly G Matrix: S-Soil SD-Solid Cooler Present Seals Intact Cooler Temperature: Relificialists by: (Signature)

GZA GeoEnvironmental, Inc.